Normalization of organ-on-a-Chip samples for mass spectrometry based proteomics and metabolomics via Dansylation-based assay

代谢组 规范化(社会学) 蛋白质组学 蛋白质组 代谢组学 质谱法 数据库规范化 计算生物学 无标记量化 定量蛋白质组学 生物 化学 生物信息学 色谱法 计算机科学 模式识别(心理学) 人工智能 生物化学 社会学 人类学 基因
作者
Erin M. Gallagher,Gabrielle M. Rizzo,Russell Dorsey,Elizabeth S. Dhummakupt,Theodore S. Moran,Phillip M. Mach,Conor Jenkins
出处
期刊:Toxicology in Vitro [Elsevier BV]
卷期号:88: 105540-105540 被引量:7
标识
DOI:10.1016/j.tiv.2022.105540
摘要

Mass spectrometry based 'omics pairs well with organ-on-a-chip-based investigations, which often have limited cellular material for sampling. However, a common issue with these chip-based platforms is well-to-well or chip-to-chip variability in the proteome and metabolome due to factors such as plate edge effects, cellular asynchronization, effluent flow, and limited cell count. This causes high variability in the quantitative multi-omics analysis of samples, potentially masking true biological changes within the system. Solutions to this have been approached via data processing tools and post-acquisition normalization strategies such as constant median, constant sum, and overall signal normalization. Unfortunately, these methods do not adequately correct for the large variations, resulting in a need for increased biological replicates. The methods in this work utilize a dansylation based assay with a subset of labeled metabolites that allow for pre-acquisition normalization to better correlate the biological perturbations that truly occur in chip-based platforms. BCA protein assays were performed in tandem with a proteomics pipeline to achieve pre-acquisition normalization. The CN Bio PhysioMimix was seeded with primary hepatocytes and challenged with VX after six days of culture, and the metabolome and proteome were analyzed using the described normalization methods. A decreased coefficient of variation percentage is achieved, significant changes are observed through the proteome and metabolome, and better classification of biological replicates acquired because of these strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助clay_park采纳,获得10
1秒前
1秒前
3秒前
3秒前
3秒前
3秒前
3秒前
3秒前
桐桐应助舒心的半仙采纳,获得10
4秒前
jyj佳完成签到,获得积分10
4秒前
4秒前
111发布了新的文献求助10
4秒前
4秒前
5秒前
5秒前
cheng完成签到,获得积分10
5秒前
科研通AI5应助Liu采纳,获得10
6秒前
xiaoxiao发布了新的文献求助10
6秒前
TTD发布了新的文献求助10
6秒前
6秒前
论文小子发布了新的文献求助10
7秒前
AI发布了新的文献求助10
8秒前
Amosummer发布了新的文献求助10
8秒前
mimicc完成签到,获得积分10
8秒前
啦啦完成签到,获得积分10
8秒前
8秒前
都是发布了新的文献求助10
9秒前
羊毛毛衣完成签到,获得积分10
9秒前
SYLH应助小胡爱科研采纳,获得20
10秒前
CipherSage应助萤火采纳,获得10
10秒前
zzq发布了新的文献求助10
11秒前
12秒前
12秒前
xiaoxiao完成签到,获得积分20
12秒前
现代的妍完成签到,获得积分10
13秒前
金jin发布了新的文献求助10
13秒前
13秒前
只只发布了新的文献求助10
13秒前
bkagyin应助活力迎天采纳,获得10
14秒前
乔烨磊发布了新的文献求助10
14秒前
高分求助中
Algorithmic Mathematics in Machine Learning 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Fatigue of Materials and Structures 260
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
The Burge and Minnechaduza Clarendonian mammalian faunas of north-central Nebraska 206
An Integrated Solution for Application of Next-Generation Sequencing in Newborn Screening 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3831915
求助须知:如何正确求助?哪些是违规求助? 3374157
关于积分的说明 10483719
捐赠科研通 3094060
什么是DOI,文献DOI怎么找? 1703290
邀请新用户注册赠送积分活动 819345
科研通“疑难数据库(出版商)”最低求助积分说明 771451