Newton-Raphson-based optimizer: A new population-based metaheuristic algorithm for continuous optimization problems

计算机科学 局部最优 水准点(测量) 数学优化 强化学习 算法 趋同(经济学) 收敛速度 牛顿法 元启发式 人口 人工智能 数学 钥匙(锁) 非线性系统 地理 物理 经济 人口学 社会学 量子力学 经济增长 计算机安全 大地测量学
作者
R. Sowmya,M. Premkumar,Pradeep Jangir
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:128: 107532-107532 被引量:142
标识
DOI:10.1016/j.engappai.2023.107532
摘要

The Newton-Raphson-Based Optimizer (NRBO), a new metaheuristic algorithm, is suggested and developed in this paper. The NRBO is inspired by Newton-Raphson's approach, and it explores the entire search process using two rules: the Newton-Raphson Search Rule (NRSR) and the Trap Avoidance Operator (TAO) and a few groups of matrices to explore the best results further. The NRSR uses a Newton-Raphson method to improve the exploration ability of NRBO and increase the convergence rate to reach improved search space positions. The TAO helps the NRBO to avoid the local optima trap. The performance of NRBO was assessed using 64 benchmark numerical functions, including 23 standard benchmarks, 29 CEC2017 constrained benchmarks, and 12 CEC2022 benchmarks. In addition, the NRBO was employed to optimize 12 CEC2020 real-world constrained engineering optimization problems. The proposed NRBO was compared to seven state-of-the-art optimization algorithms, and the findings showed that the NRBO produced promising results due to its features, such as high exploration and exploitation balance, high convergence rate, and effective avoidance of local optima capabilities. In addition, the NRBO also validated on challenging wireless communication problem called the internet of vehicle problem, and the NRBO was able to find the optimal path for data transmission. Also, the performance of NRBO in training the deep reinforcement learning agents is also studied by considering the mountain car problem. The obtained results also proved the NRBO's excellent performance in handling challenging real-world engineering problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZC完成签到,获得积分10
2秒前
jj发布了新的文献求助20
3秒前
XQ发布了新的文献求助10
3秒前
动听芷发布了新的文献求助10
3秒前
3秒前
折耳根料理大师完成签到,获得积分10
5秒前
赵世鹏完成签到,获得积分10
6秒前
深情安青应助安详的一一采纳,获得10
7秒前
zhangxinan完成签到,获得积分10
7秒前
zxf发布了新的文献求助10
7秒前
annis完成签到,获得积分10
8秒前
8秒前
somnus应助小刘不搞科研采纳,获得10
9秒前
10秒前
10秒前
古拉桑发布了新的文献求助100
11秒前
山野村夫完成签到,获得积分10
12秒前
13秒前
14秒前
北侨发布了新的文献求助10
15秒前
陈星宇完成签到,获得积分10
15秒前
wsh071117完成签到,获得积分10
16秒前
18秒前
学术pig完成签到,获得积分10
19秒前
程程发布了新的文献求助10
19秒前
19秒前
liziming发布了新的文献求助10
23秒前
25秒前
26秒前
香蕉觅云应助916采纳,获得10
28秒前
28秒前
bao驳回了Ava应助
28秒前
醒醒发布了新的文献求助10
30秒前
31秒前
SYLH应助科研通管家采纳,获得10
31秒前
笨笨熊发布了新的文献求助10
31秒前
大个应助科研通管家采纳,获得10
31秒前
SYLH应助科研通管家采纳,获得10
31秒前
SYLH应助科研通管家采纳,获得10
31秒前
英俊的铭应助科研通管家采纳,获得10
31秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Lidocaine regional block in the treatment of acute gouty arthritis of the foot 400
Ecological and Human Health Impacts of Contaminated Food and Environments 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
International Relations at LSE: A History of 75 Years 308
Commercial production of mevalonolactone by fermentation and the application to skin cosmetics with anti-aging effect 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3932162
求助须知:如何正确求助?哪些是违规求助? 3477130
关于积分的说明 10995684
捐赠科研通 3207374
什么是DOI,文献DOI怎么找? 1772456
邀请新用户注册赠送积分活动 859719
科研通“疑难数据库(出版商)”最低求助积分说明 797246