A radiomics and genomics-derived model for predicting metastasis and prognosis in colorectal cancer

结直肠癌 无线电技术 基因组学 医学 肿瘤科 转移 生物标志物 内科学 癌症 逐步回归 生物 基因组 基因 放射科 生物化学
作者
Xue Li,Meng Wu,Min Wu,Jie Liu,Song Li,Jiasi Wang,Jun Zhou,Shilin Li,Hang Yang,Jun Zhang,Xin‐Wu Cui,Zhenyu Liu,Fanxin Zeng
出处
期刊:Carcinogenesis [Oxford University Press]
卷期号:45 (3): 170-180 被引量:6
标识
DOI:10.1093/carcin/bgad098
摘要

Abstract Approximately 50% of colorectal cancer (CRC) patients would develop metastasis with poor prognosis, therefore, it is necessary to effectively predict metastasis in clinical treatment. In this study, we aimed to establish a machine-learning model for predicting metastasis in CRC patients by considering radiomics and transcriptomics simultaneously. Here, 1023 patients with CRC from three centers were collected and divided into five queues (Dazhou Central Hospital n = 517, Nanchong Central Hospital n = 120 and the Cancer Genome Atlas (TCGA) n = 386). A total of 854 radiomics features were extracted from tumor lesions on CT images, and 217 differentially expressed genes were obtained from non-metastasis and metastasis tumor tissues using RNA sequencing. Based on radiotranscriptomic (RT) analysis, a novel RT model was developed and verified through genetic algorithms (GA). Interleukin (IL)-26, a biomarker in RT model, was verified for its biological function in CRC metastasis. Furthermore, 15 radiomics variables were screened through stepwise regression, which was highly correlated with the IL26 expression level. Finally, a radiomics model (RA) was established by combining GA and stepwise regression analysis with radiomics features. The RA model exhibited favorable discriminatory ability and accuracy for metastasis prediction in two independent verification cohorts. We designed multicenter, multi-scale cohorts to construct and verify novel combined radiomics and genomics models for predicting metastasis in CRC. Overall, RT model and RA model might help clinicians in directing personalized diagnosis and therapeutic regimen selection for patients with CRC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哒哒发布了新的文献求助10
1秒前
小瓶完成签到 ,获得积分10
2秒前
4秒前
深情安青应助guojingjing采纳,获得10
4秒前
独特大米完成签到,获得积分20
6秒前
xiaowang完成签到,获得积分20
8秒前
8秒前
量子星尘发布了新的文献求助10
11秒前
独特大米发布了新的文献求助20
13秒前
lin1j完成签到,获得积分20
13秒前
14秒前
16秒前
guojingjing发布了新的文献求助10
17秒前
圆圆发布了新的文献求助10
19秒前
乔诶次完成签到 ,获得积分10
19秒前
21秒前
22秒前
慕暖完成签到,获得积分20
23秒前
深情安青应助郝又行采纳,获得10
23秒前
肖遥发布了新的文献求助10
24秒前
CodeCraft应助Rita采纳,获得10
25秒前
超帅冷雪发布了新的文献求助10
26秒前
Estrella发布了新的文献求助10
27秒前
29秒前
五十一完成签到 ,获得积分10
30秒前
guojingjing发布了新的文献求助10
34秒前
34秒前
枫叶的脚步完成签到,获得积分10
34秒前
ding应助Cheryy采纳,获得10
35秒前
望北完成签到 ,获得积分10
35秒前
37秒前
务实的亦巧完成签到,获得积分10
39秒前
cgx发布了新的文献求助30
39秒前
zxw发布了新的文献求助10
40秒前
星辰大海应助超帅冷雪采纳,获得20
41秒前
41秒前
量子星尘发布了新的文献求助10
41秒前
李健的小迷弟应助123456采纳,获得10
42秒前
Lucas应助zxw采纳,获得10
44秒前
46秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Learning to Listen, Listening to Learn 520
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3867122
求助须知:如何正确求助?哪些是违规求助? 3409376
关于积分的说明 10663349
捐赠科研通 3133540
什么是DOI,文献DOI怎么找? 1728278
邀请新用户注册赠送积分活动 832879
科研通“疑难数据库(出版商)”最低求助积分说明 780510