已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Hyperparameter-Free Attention Module Based on Feature Map Mathematical Calculation for Remote-Sensing Image Scene Classification

计算机科学 超参数 人工智能 特征(语言学) 模式识别(心理学) 启发式 上下文图像分类 机器学习 遥感 数据挖掘 图像(数学) 语言学 地质学 哲学
作者
Qiao Wan,Zhifeng Xiao,Yue Yu,Zhenqi Liu,Kai Wang,Deren Li
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-18 被引量:6
标识
DOI:10.1109/tgrs.2023.3335627
摘要

Remote-sensing scene classification (RSSC) is crucial for remote-sensing image interpretation and has become a research hotspot in recent years. However, the high complexity of remote-sensing scenes causes most RSSC models to fail to accurately capture key objects, resulting in low classification accuracy. Meanwhile, it is intractable to effectively distinguish similar scenes, such as forest and meadow, whose semantic labels are mainly determined by wide-scale features. In addition, existing remote-sensing attention mechanisms are heuristic settings, which require expert knowledge and extensive experiments. To solve the above problems, a novel plug-and-play hyperparameter-free attention module (HFAM) based on feature map mathematical calculation is proposed in this work. HFAM uses statistical indicators to quantitatively characterize the fluctuations of feature maps that can accurately locate key features and distinguish different scenes, alleviating the problems of intraclass diversity and interclass similarity. Moreover, HFAM adaptively acquires attention weights by performing simple mathematical calculations on the feature maps, which solves the problem of difficult adjustment of hyperparameters. Our proposed HFAM can be expediently inserted into the existing ConvNet models without increasing the number of model's parameters. Extensive contrast experiments with several famous plug-and-play attention modules on three mainstream datasets reveal the superiority of our HFAM in accuracy, number of parameters, and calculation amount. Moreover, compared with state-of-the-art methods, it also demonstrated considerable competitiveness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Sience发布了新的文献求助10
1秒前
3秒前
可爱香槟发布了新的文献求助20
3秒前
ANNA歆完成签到 ,获得积分10
4秒前
完美世界应助xiyo采纳,获得10
5秒前
住在魔仙堡的鱼完成签到 ,获得积分10
5秒前
田鹤飞完成签到,获得积分10
7秒前
可爱香槟完成签到,获得积分10
8秒前
bkagyin应助5165asd采纳,获得10
11秒前
12秒前
毓桦发布了新的文献求助10
13秒前
16秒前
16秒前
17秒前
18秒前
Orange应助jiaanqiang采纳,获得10
19秒前
sakiecon完成签到,获得积分10
19秒前
852应助聪慧航空采纳,获得10
20秒前
乐乐宝发布了新的文献求助10
20秒前
21秒前
羽雨完成签到 ,获得积分10
22秒前
顺利的飞荷完成签到,获得积分0
22秒前
24秒前
sha303270发布了新的文献求助10
24秒前
Dr_Zhang完成签到,获得积分10
24秒前
26秒前
26秒前
orixero应助科研通管家采纳,获得10
26秒前
科研通AI6应助科研通管家采纳,获得10
26秒前
26秒前
SciGPT应助科研通管家采纳,获得10
26秒前
科研通AI5应助科研通管家采纳,获得10
26秒前
wanci应助科研通管家采纳,获得10
26秒前
爆米花应助爱吃大米采纳,获得10
26秒前
顾矜应助科研通管家采纳,获得10
27秒前
若愚应助科研通管家采纳,获得10
27秒前
搜集达人应助科研通管家采纳,获得20
27秒前
搜集达人应助科研通管家采纳,获得10
27秒前
FashionBoy应助科研通管家采纳,获得10
27秒前
猪猪hero应助科研通管家采纳,获得10
27秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Voyage au bout de la révolution: de Pékin à Sochaux 700
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
The Start of the Start: Entrepreneurial Opportunity Identification and Evaluation 400
Simulation of High-NA EUV Lithography 400
Metals, Minerals, and Society 400
International socialism & Australian labour : the Left in Australia, 1919-1939 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4302770
求助须知:如何正确求助?哪些是违规求助? 3826584
关于积分的说明 11978574
捐赠科研通 3467570
什么是DOI,文献DOI怎么找? 1901813
邀请新用户注册赠送积分活动 949514
科研通“疑难数据库(出版商)”最低求助积分说明 851584