A Hyperparameter-Free Attention Module Based on Feature Map Mathematical Calculation for Remote-Sensing Image Scene Classification

计算机科学 超参数 人工智能 特征(语言学) 模式识别(心理学) 启发式 上下文图像分类 机器学习 遥感 数据挖掘 图像(数学) 语言学 地质学 哲学
作者
Qiao Wan,Zhifeng Xiao,Yue Yu,Zhenqi Liu,Kai Wang,Deren Li
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-18 被引量:6
标识
DOI:10.1109/tgrs.2023.3335627
摘要

Remote-sensing scene classification (RSSC) is crucial for remote-sensing image interpretation and has become a research hotspot in recent years. However, the high complexity of remote-sensing scenes causes most RSSC models to fail to accurately capture key objects, resulting in low classification accuracy. Meanwhile, it is intractable to effectively distinguish similar scenes, such as forest and meadow, whose semantic labels are mainly determined by wide-scale features. In addition, existing remote-sensing attention mechanisms are heuristic settings, which require expert knowledge and extensive experiments. To solve the above problems, a novel plug-and-play hyperparameter-free attention module (HFAM) based on feature map mathematical calculation is proposed in this work. HFAM uses statistical indicators to quantitatively characterize the fluctuations of feature maps that can accurately locate key features and distinguish different scenes, alleviating the problems of intraclass diversity and interclass similarity. Moreover, HFAM adaptively acquires attention weights by performing simple mathematical calculations on the feature maps, which solves the problem of difficult adjustment of hyperparameters. Our proposed HFAM can be expediently inserted into the existing ConvNet models without increasing the number of model's parameters. Extensive contrast experiments with several famous plug-and-play attention modules on three mainstream datasets reveal the superiority of our HFAM in accuracy, number of parameters, and calculation amount. Moreover, compared with state-of-the-art methods, it also demonstrated considerable competitiveness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可靠三问完成签到 ,获得积分10
1秒前
3秒前
现代的自行车完成签到 ,获得积分10
3秒前
4秒前
清爽的诗云完成签到,获得积分10
5秒前
彭于晏应助无情的友容采纳,获得10
5秒前
7秒前
大模型应助yhn采纳,获得10
8秒前
糊涂生活糊涂过完成签到 ,获得积分10
9秒前
求泉发布了新的文献求助10
10秒前
lalala应助清爽的诗云采纳,获得20
11秒前
浮游应助momo采纳,获得10
11秒前
zz完成签到,获得积分10
12秒前
iwbs0326完成签到,获得积分10
12秒前
ab发布了新的文献求助10
13秒前
一颗橙子完成签到,获得积分10
14秒前
慕青应助lyj334采纳,获得10
14秒前
16秒前
16秒前
粥大大完成签到 ,获得积分10
16秒前
贪玩的豪英完成签到,获得积分10
17秒前
一颗橙子发布了新的文献求助10
17秒前
19秒前
21秒前
sland完成签到,获得积分20
21秒前
hyx完成签到 ,获得积分10
22秒前
23秒前
23秒前
研友_VZG7GZ应助lv采纳,获得10
23秒前
24秒前
AAAA发布了新的文献求助10
24秒前
26秒前
科研通AI6应助求泉采纳,获得10
27秒前
哦嚯发布了新的文献求助10
27秒前
科研通AI2S应助完美砖家采纳,获得10
27秒前
zzzrx发布了新的文献求助10
28秒前
lyj334发布了新的文献求助10
28秒前
29秒前
30秒前
高冷的呆呆鱼完成签到,获得积分10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Methoden des Rechts 600
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5284421
求助须知:如何正确求助?哪些是违规求助? 4437898
关于积分的说明 13815346
捐赠科研通 4318875
什么是DOI,文献DOI怎么找? 2370751
邀请新用户注册赠送积分活动 1366060
关于科研通互助平台的介绍 1329581