Classification of multi‐feature fusion ultrasound images of breast tumor within category 4 using convolutional neural networks

卷积神经网络 特征(语言学) 人工智能 模式识别(心理学) 双雷达 熵(时间箭头) 聚类分析 计算机科学 乳腺超声检查 人工神经网络 乳房成像 交叉熵 上下文图像分类 乳腺摄影术 医学 乳腺癌 图像(数学) 内科学 癌症 哲学 语言学 物理 量子力学
作者
Pengfei Xu,Jing Zhao,Mingxi Wan,Qing Song,Qiang Su,Diya Wang
出处
期刊:Medical Physics [Wiley]
卷期号:51 (6): 4243-4257 被引量:2
标识
DOI:10.1002/mp.16946
摘要

Abstract Background Breast tumor is a fatal threat to the health of women. Ultrasound (US) is a common and economical method for the diagnosis of breast cancer. Breast imaging reporting and data system (BI‐RADS) category 4 has the highest false‐positive value of about 30% among five categories. The classification task in BI‐RADS category 4 is challenging and has not been fully studied. Purpose This work aimed to use convolutional neural networks (CNNs) for breast tumor classification using B‐mode images in category 4 to overcome the dependence on operator and artifacts. Additionally, this work intends to take full advantage of morphological and textural features in breast tumor US images to improve classification accuracy. Methods First, original US images coming directly from the hospital were cropped and resized. In 1385 B‐mode US BI‐RADS category 4 images, the biopsy eliminated 503 samples of benign tumor and left 882 of malignant. Then, K‐means clustering algorithm and entropy of sliding windows of US images were conducted. Considering the diversity of different characteristic information of malignant and benign represented by original B‐mode images, K‐means clustering images and entropy images, they are fused in a three‐channel form multi‐feature fusion images dataset. The training, validation, and test sets are 969, 277, and 139. With transfer learning, 11 CNN models including DenseNet and ResNet were investigated. Finally, by comparing accuracy, precision, recall, F1‐score, and area under curve (AUC) of the results, models which had better performance were selected. The normality of data was assessed by Shapiro‐Wilk test. DeLong test and independent t ‐test were used to evaluate the significant difference of AUC and other values. False discovery rate was utilized to ultimately evaluate the advantages of CNN with highest evaluation metrics. In addition, the study of anti‐log compression was conducted but no improvement has shown in CNNs classification results. Results With multi‐feature fusion images, DenseNet121 has highest accuracy of 80.22 ± 1.45% compared to other CNNs, precision of 77.97 ± 2.89% and AUC of 0.82 ± 0.01. Multi‐feature fusion improved accuracy of DenseNet121 by 1.87% from classification of original B‐mode images ( p < 0.05). Conclusion The CNNs with multi‐feature fusion show a good potential of reducing the false‐positive rate within category 4. The work illustrated that CNNs and fusion images have the potential to reduce false‐positive rate in breast tumor within US BI‐RADS category 4, and make the diagnosis of category 4 breast tumors to be more accurate and precise.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FrozNineTivus完成签到,获得积分10
刚刚
淡淡夕阳发布了新的文献求助20
刚刚
1秒前
louis完成签到,获得积分10
2秒前
小草完成签到,获得积分10
2秒前
3秒前
怡然铃铛发布了新的文献求助30
3秒前
科研通AI5应助阿湫采纳,获得10
3秒前
领导范儿应助细心焱采纳,获得10
4秒前
清萍红檀完成签到,获得积分10
5秒前
学术laji发布了新的文献求助10
5秒前
麻辣爆锅发布了新的文献求助10
7秒前
7秒前
情怀应助laochen采纳,获得10
7秒前
倪倪倪完成签到,获得积分10
7秒前
张张张完成签到 ,获得积分10
8秒前
8秒前
SYLH应助踏实蜜粉采纳,获得10
9秒前
VL_3发布了新的文献求助30
9秒前
10秒前
10秒前
李松完成签到,获得积分20
11秒前
11秒前
李健的小迷弟应助Stalin采纳,获得10
11秒前
六月残雪发布了新的文献求助10
13秒前
宇文向雪发布了新的文献求助10
13秒前
13秒前
昏睡的友桃完成签到,获得积分20
14秒前
英俊的铭应助Elma采纳,获得10
14秒前
14秒前
虚幻山菡完成签到 ,获得积分10
15秒前
15秒前
温暖芷文发布了新的文献求助10
15秒前
17秒前
17秒前
dfghjkl发布了新的文献求助10
17秒前
18秒前
19秒前
20秒前
20秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799773
求助须知:如何正确求助?哪些是违规求助? 3345093
关于积分的说明 10323514
捐赠科研通 3061617
什么是DOI,文献DOI怎么找? 1680474
邀请新用户注册赠送积分活动 807090
科研通“疑难数据库(出版商)”最低求助积分说明 763462