An Efficient YOLO Network With CSPCBAM, Ghost, and Cluster-NMS for Underwater Target Detection

计算机科学 水下 星团(航天器) 目标检测 人工智能 计算机视觉 计算机网络 模式识别(心理学) 地质学 海洋学
作者
Zheng Zhang,Qingshan Tong,Xiaofei Huang
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:12: 30562-30576 被引量:9
标识
DOI:10.1109/access.2024.3368878
摘要

In recent years, owing to the rapid advancements in deep learning, advanced object detection methods, such as You Only Look Once (YOLO) and Efficient Detector (EfficientDet), have been frequently used to detect underwater organisms. However, due to the complexity of underwater scenarios and deployment limitations, these models often encounter various challenges, such as blurred targets, occlusions, and high model computing costs. On this basis, we propose a YOLO network (CGC-YOLO) based on Cross-Stage Partial Convolutional Block Attention Module (CSPCBAM), Ghost module, and cluster non-maximum suppression (Cluster-NMS). Firstly, CSPCBAM enhances the model’s ability to extract intricate features by amplifying pertinent feature information across both channel and spatial dimensions. This augmentation contributes to an improved detection performance of the model, especially when dealing with fuzzy targets. Secondly, the Ghost module is employed to optimize the model’s efficiency by decreasing its parameters and reducing the computational load in terms of floating-point operations per second (FLOPs). Finally, by introducing Cluster-NMS and Score Penalty Mechanism (SPM) to reweight the confidence of bounding boxes, the model can retain the real object with occlusion. The experimental results show that on the Underwater Robot Picking Competition 2020 (URPC 2020) and brackish water dataset, the mAP@0.5 of our proposed CGC-YOLO reaches 87.2% and 98.6% respectively, which is at least 1 percentage point higher than all other models. The CGC-YOLO has 14.8 FLOPs and speeds of 7.1ms and 6.3ms, respectively, which is also better than all other models. Ablation experiments and qualitative analysis show that CGC-YOLO can deal with fuzzy and obscured objects well, with lower computational cost and faster inference speed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
1秒前
1秒前
2秒前
科目三应助大大小小采纳,获得10
2秒前
秦奎发布了新的文献求助10
2秒前
糖小白完成签到,获得积分10
5秒前
5秒前
科研通AI6应助海鲭采纳,获得10
7秒前
FashionBoy应助谣谣采纳,获得10
7秒前
7秒前
苏苏苏发布了新的文献求助10
8秒前
Nancy完成签到,获得积分10
8秒前
照影完成签到,获得积分10
8秒前
不渝发布了新的文献求助10
10秒前
王先生发布了新的文献求助10
10秒前
11秒前
11秒前
11秒前
彭于晏应助cenghao采纳,获得10
12秒前
Orange应助cenghao采纳,获得10
12秒前
小二郎应助不想找文献采纳,获得10
12秒前
英姑应助cenghao采纳,获得30
12秒前
JamesPei应助cenghao采纳,获得10
12秒前
14秒前
14秒前
14秒前
14秒前
任好好完成签到,获得积分20
15秒前
gyyyy发布了新的文献求助10
15秒前
16秒前
16秒前
风起发布了新的文献求助10
16秒前
17秒前
ljiushi完成签到 ,获得积分10
17秒前
18秒前
18秒前
18秒前
刻苦大叔发布了新的文献求助10
19秒前
zoe完成签到 ,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5662698
求助须知:如何正确求助?哪些是违规求助? 4844399
关于积分的说明 15100814
捐赠科研通 4821107
什么是DOI,文献DOI怎么找? 2580543
邀请新用户注册赠送积分活动 1534630
关于科研通互助平台的介绍 1493102