High-performance Deep Neural Network Pretrained with Contrastive Learning for Asynchronous High-frequency c-VEP Detection

计算机科学 异步通信 人工智能 解码方法 人工神经网络 语音识别 模式识别(心理学) 算法 电信
作者
En Lai,Ximing Mai,Jianjun Meng
标识
DOI:10.1109/bibm58861.2023.10385977
摘要

In order to reduce the visual fatigue during use, a high-frequency discrete-interval binary sequence (DIBS) was proposed for an asynchronous 4-target code-modulated visual evoked potential (c-VEP) brain-computer interface system. However, with traditional spatial filter-based decoding methods, some of the subjects have difficulties activating the high-frequency system from the idle states, which indicates that the system's effectiveness declined because of the user-specificity. A deep neural network was therefore built, consisting of two-way LSTM networks, for enhancing the decoding performances in the high-frequency stimulus cases. The architecture includes a pretraining phase with contrastive learning, a training phase and a fine-tuning phase. In the pseudo-online experiments, compared to the results of the usual filter-bank task-related component analysis (FB-TRCA) method, the invalid trial percentage was reduced from 22% to zero, the average reaction time (RT) from 2.75 s to 1.39 s, and the average false positive rate (FPR) from 8.33 × 10 –2 min –1 to 1.39 × 10 –2 min –1 by using the designed architecture. In this study, the detection of high-frequency c-VEP has been greatly improved, and the response signals were proved to contain useful information. All of the subjects were able to activate the system, which also verified the feasibility of high-frequency stimuli in other related experiments in the domain.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI5应助舒适路人采纳,获得10
1秒前
传奇3应助哑牛采纳,获得10
1秒前
2秒前
隐形飞雪发布了新的文献求助10
2秒前
CipherSage应助GregHouse123采纳,获得10
2秒前
海盗船长发布了新的文献求助280
3秒前
3秒前
4秒前
4秒前
秀丽的玉米完成签到,获得积分10
5秒前
斯文败类应助李志超采纳,获得10
5秒前
左丘忻完成签到,获得积分10
6秒前
6秒前
kll9797完成签到 ,获得积分10
6秒前
白白完成签到,获得积分10
6秒前
6秒前
爆米花应助tpsdxq采纳,获得10
6秒前
彭于晏应助何pengda采纳,获得10
7秒前
YiWei发布了新的文献求助10
7秒前
周七七完成签到,获得积分10
7秒前
yujia完成签到,获得积分10
8秒前
开心的小熊完成签到,获得积分10
8秒前
tan90完成签到,获得积分10
8秒前
SYLH应助玉玉采纳,获得10
8秒前
cadnash发布了新的文献求助20
9秒前
坚定的炳完成签到,获得积分10
9秒前
GYYYYYYYYYYY发布了新的文献求助10
9秒前
o泡果奶发布了新的文献求助10
10秒前
a1207732382发布了新的文献求助30
10秒前
lucky发布了新的文献求助20
11秒前
11秒前
12秒前
科研通AI5应助舒适路人采纳,获得10
13秒前
bkagyin应助zn315315采纳,获得20
13秒前
Baihuashan完成签到 ,获得积分20
13秒前
沉淀完成签到 ,获得积分10
13秒前
14秒前
整点肠子完成签到,获得积分20
15秒前
15秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Encyclopedia of Geology (2nd Edition) 2000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3786149
求助须知:如何正确求助?哪些是违规求助? 3331690
关于积分的说明 10252167
捐赠科研通 3047090
什么是DOI,文献DOI怎么找? 1672378
邀请新用户注册赠送积分活动 801270
科研通“疑难数据库(出版商)”最低求助积分说明 760110