亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

MGFKD: A semi-supervised multi-source domain adaptation algorithm for cross-subject EEG emotion recognition

计算机科学 模式识别(心理学) 分类器(UML) 人工智能 特征(语言学) 提取器 算法 集合(抽象数据类型) 哲学 工程类 程序设计语言 语言学 工艺工程
作者
Rui Zhang,Huifeng Guo,Zongxin Xu,Yuxia Hu,Mingming Chen,Lipeng Zhang
出处
期刊:Brain Research Bulletin [Elsevier BV]
卷期号:208: 110901-110901 被引量:11
标识
DOI:10.1016/j.brainresbull.2024.110901
摘要

Currently, most models rarely consider the negative transfer problem in the research field of cross-subject EEG emotion recognition. To solve this problem, this paper proposes a semi-supervised domain adaptive algorithm based on few labeled samples of target subject, which called multi-domain geodesic flow kernel dynamic distribution alignment (MGFKD). It consists of three modules: 1) GFK common feature extractor: projects the feature distribution of source and target subjects to the Grassmann manifold space, and obtains the latent common features of the two feature distributions through GFK method. 2) Source domain selector: obtains pseudo-labels of the target subject through weak classifier, finds "golden source subjects" by using few known labels of target subjects. 3) Label corrector: uses a dynamic distribution balance strategy to correct the pseudo-labels of the target subject. We conducted comparison experiments on the SEED and SEED-IV datasets, and the results show that MGFKD outperforms unsupervised and semi-supervised domain adaptation algorithms, achieving an average accuracy of 87.51±7.68% and 68.79±8.25% on the SEED and SEED-IV datasets with only one labeled sample per video for target subject. Especially when the number of source domains is set as 6 and the number of known labels is set as 5, the accuracy increase to 90.20±7.57% and 69.99±7.38%, respectively. The above results prove that our proposed algorithm can efficiently and quickly improve the cross-subject EEG emotion classification performance. Since it only need a small number of labeled samples of new subjects, making it has strong application value in future EEG-based emotion recognition applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HuiHui完成签到,获得积分10
刚刚
馆长应助sho采纳,获得30
7秒前
馆长应助sho采纳,获得30
17秒前
Wong完成签到,获得积分10
36秒前
科研通AI5应助科研通管家采纳,获得10
47秒前
馆长应助sho采纳,获得30
51秒前
馆长应助sho采纳,获得30
1分钟前
繁觅完成签到,获得积分10
3分钟前
sho完成签到,获得积分10
3分钟前
馆长应助sho采纳,获得30
3分钟前
脑洞疼应助cloud采纳,获得10
4分钟前
4分钟前
cloud发布了新的文献求助10
4分钟前
馆长应助sho采纳,获得30
4分钟前
cloud完成签到,获得积分10
4分钟前
4分钟前
krajicek完成签到,获得积分10
4分钟前
4分钟前
5分钟前
落落完成签到 ,获得积分0
5分钟前
5分钟前
雨jia发布了新的文献求助10
5分钟前
独特的追命应助雨jia采纳,获得10
5分钟前
牛八先生完成签到,获得积分10
5分钟前
Jasper应助微笑的天德采纳,获得10
6分钟前
6分钟前
enternow完成签到 ,获得积分10
6分钟前
8分钟前
8分钟前
华仔应助科研通管家采纳,获得10
8分钟前
Leedesweet完成签到 ,获得积分10
9分钟前
9分钟前
bo完成签到 ,获得积分10
10分钟前
10分钟前
bluesmile完成签到,获得积分10
10分钟前
11分钟前
KSDalton发布了新的文献求助10
11分钟前
11分钟前
傲娇老五发布了新的文献求助10
11分钟前
12分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 800
求中国石油大学(北京)图书馆的硕士论文,作者董晨,十年前搞太赫兹的 500
Vertebrate Palaeontology, 5th Edition 500
Narrative Method and Narrative form in Masaccio's Tribute Money 500
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4773733
求助须知:如何正确求助?哪些是违规求助? 4107138
关于积分的说明 12704556
捐赠科研通 3827543
什么是DOI,文献DOI怎么找? 2111668
邀请新用户注册赠送积分活动 1135662
关于科研通互助平台的介绍 1018711