Discovery of distinct cancer cachexia phenotypes using an unsupervised machine-learning algorithm

恶病质 医学 观察研究 癌症 聚类分析 队列 内科学 比例危险模型 逻辑回归 人体测量学 生存分析 肿瘤科 机器学习 计算机科学
作者
Hao-Fan Wu,Jiangpeng Yan,Qian Wu,Zhen Yu,Hongxia Xu,Song Chunhua,Zengqing Guo,Wei Li,Yan‐Jun Xiang,Zhe Xu,Jie Luo,Shuqun Cheng,Feng‐Min Zhang,Hanping Shi,Cheng-Le Zhuang
出处
期刊:Nutrition [Elsevier BV]
卷期号:119: 112317-112317 被引量:3
标识
DOI:10.1016/j.nut.2023.112317
摘要

Cancer cachexia is a debilitating condition with widespread negative effects. The heterogeneity of clinical features within patients with cancer cachexia is unclear. The identification and prognostic analysis of diverse phenotypes of cancer cachexia may help develop individualized interventions to improve outcomes for vulnerable populations. The aim of this study was to show that the machine learning–based cancer cachexia classification model generalized well on the external validation cohort. This was a nationwide multicenter observational study conducted from October 2012 to April 2021 in China. Unsupervised consensus clustering analysis was applied based on demographic, anthropometric, nutritional, oncological, and quality-of-life data. Key characteristics of each cluster were identified using the standardized mean difference. We used logistic and Cox regression analysis to evaluate 1-, 3-, 5-y, and overall mortality. A consensus clustering algorithm was performed for 4329 patients with cancer cachexia in the discovery cohort, and four clusters with distinct phenotypes were uncovered. From clusters 1 to 4, the clinical characteristics of patients showed a transition from almost unimpaired to mildly, moderately, and severely impaired. Consistently, an increase in mortality from clusters 1 to 4 was observed. The overall mortality rate was 32%, 40%, 54%, and 68%, and the median overall survival time was 21.9, 18, 16.7, and 13.6 mo for patients in clusters 1 to 4, respectively. Our machine learning-based model performed better in predicting mortality than the traditional model. External validation confirmed the above results. Machine learning is valuable for phenotype classifications of patients with cancer cachexia. Detection of clinically distinct clusters among cachexic patients assists in scheduling personalized treatment strategies and in patient selection for clinical trials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
summerlore完成签到,获得积分10
1秒前
上官若男应助阿仔采纳,获得10
3秒前
科研通AI5应助小米粥采纳,获得10
3秒前
5秒前
5秒前
xf潇洒哥发布了新的文献求助20
5秒前
wxiao发布了新的文献求助10
6秒前
6秒前
Jasper应助soooyaaa采纳,获得10
7秒前
CHEN完成签到 ,获得积分10
7秒前
7秒前
量子星尘发布了新的文献求助10
8秒前
VC完成签到,获得积分10
8秒前
9秒前
Dvus完成签到,获得积分20
9秒前
今夕何夕给今夕何夕的求助进行了留言
12秒前
13秒前
13秒前
13秒前
14秒前
14秒前
14秒前
14秒前
zorrial完成签到,获得积分10
15秒前
幸福妙柏发布了新的文献求助10
17秒前
17秒前
韩1234发布了新的文献求助10
19秒前
20秒前
点点点点发布了新的文献求助10
20秒前
20秒前
zmnzmnzmn发布了新的文献求助10
20秒前
桑叶完成签到,获得积分10
22秒前
李爱国应助檸123456采纳,获得10
22秒前
科目三应助韩1234采纳,获得10
25秒前
深情安青应助明理冰淇淋采纳,获得10
25秒前
隐形曼青应助阿仔采纳,获得10
25秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 500
translating meaning 500
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4898874
求助须知:如何正确求助?哪些是违规求助? 4179426
关于积分的说明 12974964
捐赠科研通 3943420
什么是DOI,文献DOI怎么找? 2163330
邀请新用户注册赠送积分活动 1181673
关于科研通互助平台的介绍 1087325