Technical note: Generalizable and promptable artificial intelligence model to augment clinical delineation in radiation oncology

分割 雅卡索引 掷骰子 医学物理学 放射治疗计划 深度学习 放射治疗 概化理论 医学 计算机视觉 人工智能 计算机科学 模式识别(心理学) 核医学 放射科 数学 统计 几何学
作者
Lian Zhang,Zhengliang Liu,Lu Zhang,Zihao Wu,Xiaowei Yu,Jason Holmes,Hongying Feng,Haixing Dai,Xiang Li,Quanzheng Li,William W. Wong,Sujay A. Vora,Dajiang Zhu,Tianming Liu,Wei Liu
出处
期刊:Medical Physics [Wiley]
卷期号:51 (3): 2187-2199 被引量:4
标识
DOI:10.1002/mp.16965
摘要

Abstract Background Efficient and accurate delineation of organs at risk (OARs) is a critical procedure for treatment planning and dose evaluation. Deep learning‐based auto‐segmentation of OARs has shown promising results and is increasingly being used in radiation therapy. However, existing deep learning‐based auto‐segmentation approaches face two challenges in clinical practice: generalizability and human‐AI interaction. A generalizable and promptable auto‐segmentation model, which segments OARs of multiple disease sites simultaneously and supports on‐the‐fly human‐AI interaction, can significantly enhance the efficiency of radiation therapy treatment planning. Purpose Meta's segment anything model (SAM) was proposed as a generalizable and promptable model for next‐generation natural image segmentation. We further evaluated the performance of SAM in radiotherapy segmentation. Methods Computed tomography (CT) images of clinical cases from four disease sites at our institute were collected: prostate, lung, gastrointestinal, and head & neck. For each case, we selected the OARs important in radiotherapy treatment planning. We then compared both the Dice coefficients and Jaccard indices derived from three distinct methods: manual delineation (ground truth), automatic segmentation using SAM's ’segment anything’ mode, and automatic segmentation using SAM's ‘box prompt’ mode that implements manual interaction via live prompts during segmentation. Results Our results indicate that SAM's segment anything mode can achieve clinically acceptable segmentation results in most OARs with Dice scores higher than 0.7. SAM's box prompt mode further improves Dice scores by 0.1∼0.5. Similar results were observed for Jaccard indices. The results show that SAM performs better for prostate and lung, but worse for gastrointestinal and head & neck. When considering the size of organs and the distinctiveness of their boundaries, SAM shows better performance for large organs with distinct boundaries, such as lung and liver, and worse for smaller organs with less distinct boundaries, like parotid and cochlea. Conclusions Our results demonstrate SAM's robust generalizability with consistent accuracy in automatic segmentation for radiotherapy. Furthermore, the advanced box‐prompt method enables the users to augment auto‐segmentation interactively and dynamically, leading to patient‐specific auto‐segmentation in radiation therapy. SAM's generalizability across different disease sites and different modalities makes it feasible to develop a generic auto‐segmentation model in radiotherapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
2秒前
Jacob完成签到,获得积分10
2秒前
黄佳发布了新的文献求助10
3秒前
3秒前
3秒前
kmzzy完成签到,获得积分10
4秒前
无情的发箍完成签到,获得积分10
5秒前
田様应助鸿鲤采纳,获得10
5秒前
cdercder应助皮卡丘不吃饭采纳,获得10
6秒前
6秒前
李健的小迷弟应助123456qi采纳,获得10
7秒前
7秒前
方羽发布了新的文献求助10
8秒前
9秒前
auraLyV完成签到,获得积分10
10秒前
11秒前
糟糕的问儿完成签到,获得积分10
12秒前
Yichel发布了新的文献求助10
12秒前
14秒前
14秒前
CodeCraft应助aique采纳,获得10
15秒前
顾矜应助糟糕的问儿采纳,获得10
16秒前
17秒前
Alger发布了新的文献求助10
17秒前
18秒前
諵十一完成签到,获得积分10
18秒前
董飞发布了新的文献求助10
19秒前
19秒前
20秒前
科研通AI5应助lalala123采纳,获得10
21秒前
鸿鲤发布了新的文献求助10
22秒前
大方的黑米完成签到,获得积分10
22秒前
wy97完成签到,获得积分10
23秒前
24秒前
小曹硕士发布了新的文献求助10
29秒前
29秒前
30秒前
bkagyin应助朴实的青雪采纳,获得10
31秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3791373
求助须知:如何正确求助?哪些是违规求助? 3335830
关于积分的说明 10277497
捐赠科研通 3052572
什么是DOI,文献DOI怎么找? 1675134
邀请新用户注册赠送积分活动 803155
科研通“疑难数据库(出版商)”最低求助积分说明 761111