Fault diagnosis of gearbox driven by vibration response mechanism and enhanced unsupervised domain adaptation

机制(生物学) 振动 断层(地质) 模式识别(心理学) 领域(数学分析) 计算机科学 功能(生物学) 人工智能 质量(理念) 人工神经网络 数据挖掘 数学 地质学 物理 地震学 哲学 认识论 数学分析 进化生物学 量子力学 生物
作者
Fei Jiang,Weiqi Lin,Zhaoqian Wu,Shaohui Zhang,Zhuyun Chen,Weihua Li
出处
期刊:Advanced Engineering Informatics [Elsevier BV]
卷期号:61: 102460-102460 被引量:11
标识
DOI:10.1016/j.aei.2024.102460
摘要

Although data-driven model has achieved remarkable results in gearbox fault diagnosis, its diagnostic accuracy is still highly dependent on large amounts of high-quality labeled samples. Some data generation methods, such as generative adversarial network, are utilized to address this problem. However, the generated simulation samples not only lack fault mechanism features with clear physical meaning, but also have distribution differences with the real samples. Aiming at the above problems, an enhanced unsupervised domain adaption method combined with vibration response mechanism is proposed for gearbox fault diagnosis. Firstly, various fault types of labeled simulation signals with clear physical meaning are generated based on vibration response mechanism of gearbox, alleviating the lack of large amounts of high-quality labeled samples for data-driven models. Secondly, to narrow the inevitable domain discrepancy between simulation samples and experimental samples, a domain mapping method is raised to both transform their distributions to normal distribution by optimizing an alignment function, which also could effectively improve the diagnostic speed and accuracy of intelligent models. Finally, the mapped samples are directly fed into an arbitrary unsupervised domain adaptation model to achieve fault diagnosis in the absence of any label information of measured samples. Importantly, the proposed domain mapping method can be simply appended to any existing core network to enhance diagnostic accuracy without necessitating modifications to its structure or training procedure. Experiments on two gearbox datasets suggest that the proposed method can effectively boost the performance of diagnosis issues with only a small number of experimental samples and outperform existing diagnosis approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
子车安萱发布了新的文献求助10
1秒前
AlwaysKim发布了新的文献求助10
4秒前
子车安萱完成签到,获得积分10
6秒前
鸡蛋灌饼与掉渣饼完成签到,获得积分10
6秒前
7秒前
ddd完成签到 ,获得积分10
9秒前
清清佑佑发布了新的文献求助10
13秒前
田様应助AlwaysKim采纳,获得10
15秒前
15秒前
霸气安蕾发布了新的文献求助10
19秒前
唯梦完成签到 ,获得积分10
19秒前
20秒前
1111完成签到,获得积分10
20秒前
万能图书馆应助Du采纳,获得10
24秒前
whl发布了新的文献求助10
25秒前
26秒前
xifeng完成签到 ,获得积分10
28秒前
65556发布了新的文献求助10
30秒前
37秒前
39秒前
翟煜发布了新的文献求助10
40秒前
Lu完成签到 ,获得积分10
43秒前
cun完成签到,获得积分10
44秒前
垚垚发布了新的文献求助10
44秒前
iNk应助wodetaiyangLLL采纳,获得10
48秒前
田様应助应应采纳,获得10
49秒前
秋山伊夫完成签到,获得积分10
50秒前
gzj完成签到,获得积分10
50秒前
三水完成签到,获得积分10
54秒前
华仔应助zbb采纳,获得10
55秒前
55秒前
李健应助科研通管家采纳,获得10
58秒前
汉堡包应助科研通管家采纳,获得10
58秒前
59秒前
科研通AI5应助南风知我意采纳,获得10
59秒前
1分钟前
小二郎应助唐唐采纳,获得10
1分钟前
许钟一完成签到,获得积分10
1分钟前
1分钟前
Du发布了新的文献求助10
1分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3783222
求助须知:如何正确求助?哪些是违规求助? 3328565
关于积分的说明 10236984
捐赠科研通 3043669
什么是DOI,文献DOI怎么找? 1670627
邀请新用户注册赠送积分活动 799792
科研通“疑难数据库(出版商)”最低求助积分说明 759126