Strength in Diversity: Multi-Branch Representation Learning for Vehicle Re-Identification

多样性(政治) 鉴定(生物学) 代表(政治) 计算机科学 人工智能 模式识别(心理学) 政治学 人类学 植物 生物 政治 社会学 法学
作者
Eurico Almeida,Bruno Silva,Jorge Batista
标识
DOI:10.1109/itsc57777.2023.10422175
摘要

This paper presents an efficient and lightweight multi-branch deep architecture to improve vehicle reidentification (V-ReID). While most V-ReID work uses a combination of complex multi-branch architectures to extract robust and diversified embeddings towards re-identification, we advocate that simple and lightweight architectures can be designed to fulfill the Re-Idtask without compromising performance. We propose a combination of Grouped-convolution and Loss-Branch-Split strategies to design a multi-branch architecture that improve feature diversity and feature discriminability. We combine a ResNet50 global branch architecture with a BotNet self-attention branch architecture, both designed within a Loss-Branch-Split (LBS) strategy. We argue that specialized loss-branch-splitting helps to improve re-identification tasks by generating specialized re-identification features. A lightweight solution using grouped convolution is also proposed to mimic the learning of loss-splitting into multiple embeddings while significantly reducing the model size. In addition, we designed an improved solution to leverage additional metadata, such as camera ID and pose information, that uses 97% less parameters, further improving re-identification performance. In comparison to state-of-the-art (SoTA) methods, our approach outperforms competing solutions in Veri-776 by achieving 85.6% mAP and 97.7% CMC1 and obtains competitive results in Veri-Wild with 88.1% mAP and 96.3% CMC1. Overall, our work provides important insights into improving vehicle re-identification and presents a strong basis for other retrieval tasks. Our code is available at the link.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
柳月萍发布了新的文献求助10
1秒前
王大好人完成签到,获得积分10
1秒前
Tylose发布了新的文献求助10
2秒前
我是老大应助longfang采纳,获得10
2秒前
脑洞疼应助linyuping采纳,获得30
4秒前
4秒前
nenoaowu发布了新的文献求助10
5秒前
5秒前
5秒前
呆萌羊青完成签到,获得积分10
6秒前
Jasper应助casting采纳,获得10
6秒前
6秒前
hui发布了新的文献求助10
7秒前
秉烛游发布了新的文献求助10
8秒前
8秒前
丙子哥完成签到,获得积分10
9秒前
远方的面包完成签到,获得积分20
9秒前
是八八不是八完成签到,获得积分10
9秒前
平平宁完成签到,获得积分10
9秒前
nan应助nenoaowu采纳,获得30
10秒前
Karma发布了新的文献求助10
10秒前
Li应助yamada采纳,获得50
10秒前
毛血旺完成签到,获得积分10
11秒前
LIHAO发布了新的文献求助10
12秒前
111完成签到,获得积分10
12秒前
独行独行完成签到,获得积分10
12秒前
13秒前
13秒前
lt发布了新的文献求助10
13秒前
Juvigate完成签到,获得积分20
14秒前
带善人发布了新的文献求助10
14秒前
大方乘云完成签到,获得积分10
14秒前
淡然诗云发布了新的文献求助10
14秒前
15秒前
lal完成签到,获得积分10
15秒前
柠檬酸循环完成签到,获得积分20
15秒前
朱问安完成签到,获得积分10
15秒前
辛夷完成签到,获得积分10
16秒前
1Liang完成签到,获得积分10
16秒前
YANGGG完成签到,获得积分20
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5252162
求助须知:如何正确求助?哪些是违规求助? 4415980
关于积分的说明 13748195
捐赠科研通 4287828
什么是DOI,文献DOI怎么找? 2352660
邀请新用户注册赠送积分活动 1349440
关于科研通互助平台的介绍 1308945