已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Weak and High Maneuvering UAV Detection via Long-time Coherent Integration based on KT-BCS-LSM Method

计算机科学 电子工程 电气工程 工程类 物理 实时计算
作者
Lei Yu,Yichao Zhao,Qilei Zhang,Feng He,Yongsheng Zhang,Yi Su
出处
期刊:IEEE Transactions on Vehicular Technology [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15 被引量:1
标识
DOI:10.1109/tvt.2024.3365654
摘要

This paper intends to address the long-time coherent integration (LTCI) of high maneuvering unmanned aerial vehicle (UAV) in low SNR environment with the idea of sparse reconstruction. Due to the small radar cross section (RCS), high maneuverability and micro-Doppler (m-D) effect, the robust detection of weak UAV target is a challenging problem. Both of the across range unit (ARU) effect and Doppler frequency migration (DFM) will be introduced in UAV returns due to high maneuverability. Furthermore, m-D effect induced by the rotation of rotor blades will also disturb the LTCI performance. To address these problems, a LTCI method called KT-BCS-LSM is proposed for high maneuvering UAV detection. To mitigate the disturbance of m-D effect, the null space pursuit (NSP) with third-order differential operator is constructed to separate the m-D signal from UAV returns. Then, the keystone transform (KT) is applied for range walk correction. Motion parameters estimation, including velocity, acceleration and jerk, is modeled as a sparse representation problem and solved by Bayesian compressive sensing (BCS) with Laplacian scale mixture (LSM) prior. Compared with the searching-based method, like generalized RFT (GRFT), the proposed method has significant higher computational efficiency. Compared with transform-based methods, like fractional Fourier transform (FrFT) and Lv's distribution (LVD), the proposed algorithm is able to compensate the DFM induced by jerk motion and has higher estimation accuracy and noise robustness. The effectiveness of proposed method is validated by numerical simulations and real-measured data of a DJI UAV.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顺心的惜蕊完成签到 ,获得积分10
2秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
5秒前
大傻春完成签到 ,获得积分10
5秒前
啦啦啦啦完成签到,获得积分10
5秒前
luroa完成签到 ,获得积分10
6秒前
大模型应助块块咪采纳,获得10
6秒前
深情安青应助隐形怜南采纳,获得10
7秒前
魁梧的衫完成签到 ,获得积分10
8秒前
Eureka发布了新的文献求助10
8秒前
Rathma发布了新的文献求助10
10秒前
成就书雪完成签到 ,获得积分0
13秒前
烨枫晨曦完成签到,获得积分10
15秒前
陈陈陈皮完成签到,获得积分10
15秒前
Ava应助黄辉冯采纳,获得10
17秒前
20秒前
21秒前
上官若男应助乐瑶采纳,获得10
21秒前
morena发布了新的文献求助10
26秒前
共享精神应助Zeng采纳,获得10
29秒前
阿景完成签到,获得积分10
30秒前
Cohenyun完成签到,获得积分10
35秒前
shweah2003完成签到,获得积分0
36秒前
怕孤单的幼荷完成签到 ,获得积分10
36秒前
36秒前
万能图书馆应助Rathma采纳,获得10
38秒前
块块咪发布了新的文献求助10
41秒前
XIA完成签到 ,获得积分10
42秒前
高泽伟发布了新的文献求助10
45秒前
Owen应助薛雨佳采纳,获得10
47秒前
4652376完成签到 ,获得积分10
50秒前
大师兄完成签到,获得积分10
52秒前
52秒前
黄辉冯发布了新的文献求助10
55秒前
56秒前
852应助aaa采纳,获得10
58秒前
渺渺完成签到 ,获得积分10
58秒前
1分钟前
eco发布了新的文献求助10
1分钟前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Introducing Sociology Using the Stuff of Everyday Life 400
Conjugated Polymers: Synthesis & Design 400
Picture Books with Same-sex Parented Families: Unintentional Censorship 380
Metals, Minerals, and Society 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4255385
求助须知:如何正确求助?哪些是违规求助? 3788147
关于积分的说明 11888371
捐赠科研通 3438126
什么是DOI,文献DOI怎么找? 1886789
邀请新用户注册赠送积分活动 937911
科研通“疑难数据库(出版商)”最低求助积分说明 843614