RidgeVPR: A Global Positioning Framework in Sparse Feature Outdoor Environments Using Visual Place Recognition and Ridge Line Feature Matching

特征(语言学) 计算机科学 山脊 人工智能 计算机视觉 特征匹配 特征提取 直线(几何图形) 模式识别(心理学) 匹配(统计) 地理 地图学 数学 哲学 语言学 统计 几何学
作者
Shuai Zheng,Bingzhuo Yu,Yingjie Chen,Songhao Zhang,Jun Hong
出处
期刊:IEEE Transactions on Vehicular Technology [Institute of Electrical and Electronics Engineers]
卷期号:73 (7): 9424-9440 被引量:1
标识
DOI:10.1109/tvt.2024.3367915
摘要

Accurate global positioning has always played an important role in localization-based applications such as automatic driving, navigation, mapping, etc. The GNSS (Global Navigation Satellite System) becomes indispensable for long-distance remote outdoor positioning tasks, but its stability is susceptible to various types of interference, such as suppression jamming and spoofing jamming, etc. In such scenes, global real-time positioning is hard to achieve through only visual SLAM (Simultaneous Localization and Mapping) or INS (Inertial Navigation Systems), especially in remote outdoor areas due to the prevalence of sparse features and accumulative INS accuracy degradation. In this paper, we explore a two-stage global real-time positioning framework under specific environmental conditions, which may be useful for localization applications in remote areas with sparse features. The first stage is to achieve coarse-level positioning using a single-scale feature fusion network to retrieve images from historically captured road datasets. In the second stage of fine-level positioning, we perform feature matching between the current taken image and the retrieved image, to calculate the camera pose transformation, to refine the position error between the two images. Specifically, the features are obtained from a specially designed combination of an image-level DNN (Deep Neural Network) and a ridge line feature detector, to better adapt to the low-texture environments. After that, we use the calculated camera pose and the retrieved historical image labeled with GNSS information to obtain the current image's GNSS. Experiments show the proposed image retrieval network and feature matching method achieve good results in terms of performance and accuracy. They also prove that our framework achieves global real-time positioning under GNSS suppression in our specific sparse feature datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fearlessji完成签到 ,获得积分10
1秒前
TJW发布了新的文献求助10
1秒前
bc举报蓝色的帐篷求助涉嫌违规
2秒前
柚子完成签到 ,获得积分10
2秒前
时倾完成签到,获得积分10
3秒前
默默的苠完成签到,获得积分10
3秒前
3秒前
lin应助yy采纳,获得10
4秒前
清茶旧友完成签到,获得积分10
4秒前
燕儿应助wyl采纳,获得10
4秒前
Rana完成签到 ,获得积分10
4秒前
努力科研的小吴完成签到,获得积分10
4秒前
Aries完成签到 ,获得积分10
5秒前
望仔完成签到 ,获得积分10
5秒前
5秒前
科研通AI5应助Disappear采纳,获得30
5秒前
Cynthia完成签到 ,获得积分10
5秒前
6秒前
6秒前
7秒前
7秒前
许钟一完成签到,获得积分10
7秒前
echasl73完成签到,获得积分10
7秒前
可爱的羽毛完成签到,获得积分10
7秒前
年轻契发布了新的文献求助10
7秒前
7秒前
8秒前
8秒前
8秒前
落林樾完成签到 ,获得积分10
9秒前
9秒前
秦川发布了新的文献求助30
9秒前
搜集达人应助corner采纳,获得10
9秒前
ding应助飞仔123采纳,获得10
9秒前
是真的宇航员啊完成签到,获得积分10
9秒前
啥文献找不到完成签到,获得积分10
10秒前
热心的紫寒完成签到,获得积分10
10秒前
yangtaotao完成签到,获得积分20
10秒前
11秒前
醉熏的天薇完成签到,获得积分10
11秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792901
求助须知:如何正确求助?哪些是违规求助? 3337465
关于积分的说明 10285340
捐赠科研通 3054138
什么是DOI,文献DOI怎么找? 1675858
邀请新用户注册赠送积分活动 803795
科研通“疑难数据库(出版商)”最低求助积分说明 761561