Transferability-Guided Cross-Domain Cross-Task Transfer Learning

计算机科学 可转让性 交叉熵 学习迁移 公制(单位) 人工智能 理论计算机科学 机器学习 最大熵原理 运营管理 罗伊特 经济
作者
Yang Tan,Enming Zhang,Yang Li,Shao‐Lun Huang,Xiao–Ping Zhang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:36 (2): 2423-2436 被引量:8
标识
DOI:10.1109/tnnls.2024.3358094
摘要

We propose two novel transferability metrics fast optimal transport-based conditional entropy (F-OTCE) and joint correspondence OTCE (JC-OTCE) to evaluate how much the source model (task) can benefit the learning of the target task and to learn more generalizable representations for cross-domain cross-task transfer learning. Unlike the original OTCE metric that requires evaluating the empirical transferability on auxiliary tasks, our metrics are auxiliary-free such that they can be computed much more efficiently. Specifically, F-OTCE estimates transferability by first solving an optimal transport (OT) problem between source and target distributions and then uses the optimal coupling to compute the negative conditional entropy (NCE) between the source and target labels. It can also serve as an objective function to enhance downstream transfer learning tasks including model finetuning and domain generalization (DG). Meanwhile, JC-OTCE improves the transferability accuracy of F-OTCE by including label distances in the OT problem, though it incurs additional computation costs. Extensive experiments demonstrate that F-OTCE and JC-OTCE outperform state-of-the-art auxiliary-free metrics by $21.1\%$ and $25.8\%$ , respectively, in correlation coefficient with the ground-truth transfer accuracy. By eliminating the training cost of auxiliary tasks, the two metrics reduce the total computation time of the previous method from 43 min to 9.32 and 10.78 s, respectively, for a pair of tasks. When applied in the model finetuning and DG tasks, F-OTCE shows significant improvements in the transfer accuracy in few-shot classification experiments, with up to $4.41\%$ and $2.34\%$ accuracy gains, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
XUBALA发布了新的文献求助10
2秒前
3秒前
caoruyuan发布了新的文献求助10
3秒前
4秒前
无极微光应助shtnice采纳,获得20
4秒前
大个应助1sss采纳,获得10
5秒前
buno应助温暖访枫采纳,获得10
5秒前
蓝天应助温暖访枫采纳,获得10
5秒前
科研通AI6应助温暖访枫采纳,获得10
5秒前
林夕完成签到,获得积分10
6秒前
7秒前
丰富飞阳发布了新的文献求助10
7秒前
sapphire_yy完成签到,获得积分10
9秒前
Keira完成签到,获得积分10
9秒前
西贝发布了新的文献求助10
9秒前
思源应助蓝莓采纳,获得10
10秒前
10秒前
10秒前
ppll3906发布了新的文献求助10
11秒前
14秒前
emmai发布了新的文献求助10
14秒前
14秒前
14秒前
yrw完成签到,获得积分10
15秒前
321完成签到,获得积分10
15秒前
小叮当完成签到,获得积分10
16秒前
KKKK完成签到,获得积分20
16秒前
七友应助tinner采纳,获得10
16秒前
16秒前
Joker发布了新的文献求助10
16秒前
李文君发布了新的文献求助10
18秒前
mumahuangshu完成签到,获得积分20
18秒前
充电小子完成签到 ,获得积分10
18秒前
叫我益达完成签到,获得积分10
18秒前
18秒前
18秒前
KKKK发布了新的文献求助10
19秒前
19秒前
ppll3906完成签到,获得积分10
20秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5588492
求助须知:如何正确求助?哪些是违规求助? 4671582
关于积分的说明 14787884
捐赠科研通 4625454
什么是DOI,文献DOI怎么找? 2531836
邀请新用户注册赠送积分活动 1500428
关于科研通互助平台的介绍 1468314