Dual-functional perforated metamaterial plate for amplified energy harvesting of both acoustic and flexural waves

声学 超材料 能量收集 压电 抗弯强度 材料科学 背景(考古学) 带隙 物理 能量(信号处理) 光电子学 复合材料 地质学 古生物学 量子力学
作者
Tian Deng,Luke Zhao,Feng Jin
出处
期刊:Thin-walled Structures [Elsevier]
卷期号:197: 111615-111615
标识
DOI:10.1016/j.tws.2024.111615
摘要

Metamaterials with defect states are commonly utilized in energy harvesting from acoustic and elastic waves due to their remarkable ability to localize waves. In this study, a novel piezoelectric energy harvester based on a perforated double-pillars metamaterial plate with a point defect, which offers the advantage of efficiently harvesting both ambient acoustic and flexural wave energy, is proposed. The proposed structure incorporates a locally resonant mechanism that enhances the concentration of vibration energy at the defect band frequency. Then, the amplified wave energy is efficiently converted into electrical energy by attaching a piezoelectric patch at the defect position. To initiate this investigation, the differential quadrature method is employed to theoretically estimate the boundary frequencies of the first band gap. Subsequently, this study investigates how holes size, electrical boundary conditions, and electrical circuit connections affect the energy harvesting of both acoustic and flexural waves. Correspondingly, the mechanisms behind their effects are thoroughly explained. Numerical results demonstrate that the wave energy localization performance can be remarkably amplified with an increasing holes radius, and the harvesters with the 1mm holes radius generate voltages that are approximately 2.12 and 1.44 times higher than those with the 0mm holes radius from acoustic and flexural waves, respectively. Furthermore, variations in the defect band frequency and corresponding wave localization behavior depend on the specific electrical boundary conditions and circuit connection approaches, ultimately leading to distinct results in the output electrical energy. These findings present valuable insights and guidelines for the development of high-performance electronic applications in the context of acoustic and elastic wave energy harvesting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无花果应助Crystal采纳,获得10
刚刚
Martin完成签到,获得积分10
刚刚
shisui应助科研豪97采纳,获得30
1秒前
小蘑菇应助乔巴采纳,获得10
1秒前
Jasper应助今天没烦恼采纳,获得10
1秒前
一三四发布了新的文献求助10
2秒前
2秒前
5秒前
feipeng发布了新的文献求助10
8秒前
科目三应助糖果采纳,获得10
9秒前
脑洞疼应助gy采纳,获得10
11秒前
传奇3应助小玲仔采纳,获得10
11秒前
11秒前
12秒前
12秒前
水边的竹完成签到,获得积分10
13秒前
13秒前
14秒前
成成程完成签到,获得积分10
14秒前
小马甲应助科研通管家采纳,获得30
15秒前
秋雪瑶应助科研通管家采纳,获得10
15秒前
Jasper应助科研通管家采纳,获得10
15秒前
15秒前
若水应助科研通管家采纳,获得10
15秒前
慕青应助科研通管家采纳,获得10
15秒前
1128发布了新的文献求助10
15秒前
苑lanjie完成签到,获得积分10
16秒前
17秒前
17秒前
共享精神应助甜蜜土豆采纳,获得50
18秒前
云云发布了新的文献求助10
19秒前
20秒前
1111完成签到 ,获得积分10
21秒前
Giao发布了新的文献求助10
21秒前
大胖发布了新的文献求助30
22秒前
22秒前
华仔应助自信筮采纳,获得10
22秒前
蓝冬完成签到,获得积分10
22秒前
23秒前
Crystal完成签到,获得积分10
23秒前
高分求助中
The three stars each : the Astrolabes and related texts 1070
Manual of Clinical Microbiology, 4 Volume Set (ASM Books) 13th Edition 1000
Sport in der Antike 800
Aspect and Predication: The Semantics of Argument Structure 666
De arte gymnastica. The art of gymnastics 600
少脉山油柑叶的化学成分研究 530
Stephen R. Mackinnon - Chen Hansheng: China’s Last Romantic Revolutionary (2023) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2409601
求助须知:如何正确求助?哪些是违规求助? 2105411
关于积分的说明 5317838
捐赠科研通 1832907
什么是DOI,文献DOI怎么找? 913287
版权声明 560765
科研通“疑难数据库(出版商)”最低求助积分说明 488351