亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Source term estimation for continuous plume dispersion in Fusion Field Trial-07: Bayesian inference probability adjoint inverse method

马尔科夫蒙特卡洛 贝叶斯推理 贝叶斯概率 计算机科学 算法 数学 数学优化 统计
作者
Hongliang Zhang,Bin Li,Jin Shang,Weiwei Wang,Fu-Yun Zhao
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:915: 169802-169802 被引量:11
标识
DOI:10.1016/j.scitotenv.2023.169802
摘要

In scenarios involving sudden releases of unidentified gases or concealed pollution emergencies, source control emerges as a critical procedure to safeguard residential air quality. Appropriate inverse source tracking methodology depending on diverse measurement data could be utilized to promptly identify pollutant source parameters. In this study, source term estimation (STE) method, i.e., jointly combining probability adjoint method with the Bayesian inference method, has been proposed. General form of the pollutant inverse transport equation was firstly established. Subsequently, the pollution source information, assumed from single continuous point releases during Fusion Field Trials 2007 under an unsteady wind field, was identified using the Bayesian inference probability adjoint inverse method. Metropolis-Hastings Markov Chain Monte Carlo (MH-MCMC) and Differential Evolution Markov Chain Monte Carlo (DE-MCMC) were then compared as sampling methods for Bayesian inference. Results indicated that the DE-MCMC algorithm has superior convergence and could present higher accuracy of pollutant source information than that of MH-MCMC algorithm, particularly for highly nonlinear and multi-modal distribution systems. Furthermore, the integration of Union standard Adjoint Location Probability (UALP) as prior information into the Bayesian inference probability adjoint inverse method effectively narrowed the sampling range, enhancing both the accuracy and robustness of the proposed approach. Finally, the impact of the covariance matrix on the inverse identification accuracy was explored. Overall, this research has provided insights into the future applicability of this Bayesian inference inversion technique for point source identification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
22秒前
24秒前
haoqingyun发布了新的文献求助10
28秒前
hanwei_mei发布了新的文献求助10
28秒前
32秒前
34秒前
hanwei_mei完成签到,获得积分10
40秒前
haoqingyun发布了新的文献求助10
57秒前
CodeCraft应助腼腆的月亮采纳,获得10
59秒前
田様应助科研通管家采纳,获得10
1分钟前
1分钟前
浮游应助wuran采纳,获得10
1分钟前
haoqingyun完成签到,获得积分10
1分钟前
搔扒完成签到,获得积分10
1分钟前
大熊完成签到 ,获得积分10
1分钟前
sy完成签到 ,获得积分10
2分钟前
情怀应助安详的面包采纳,获得10
2分钟前
qqq完成签到,获得积分10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
ceeray23应助科研通管家采纳,获得10
3分钟前
远方完成签到,获得积分10
3分钟前
浮游应助wuran采纳,获得10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
4分钟前
4分钟前
佳佳发布了新的文献求助10
5分钟前
ceeray23应助科研通管家采纳,获得10
5分钟前
Criminology34应助科研通管家采纳,获得10
5分钟前
ceeray23应助科研通管家采纳,获得10
5分钟前
Criminology34应助科研通管家采纳,获得10
5分钟前
ceeray23应助科研通管家采纳,获得10
5分钟前
Akim应助佳佳采纳,获得10
5分钟前
5分钟前
NexusExplorer应助huaixup采纳,获得10
5分钟前
5分钟前
佳佳发布了新的文献求助10
5分钟前
狂野的含烟完成签到 ,获得积分10
6分钟前
6分钟前
6分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5650990
求助须知:如何正确求助?哪些是违规求助? 4782616
关于积分的说明 15052919
捐赠科研通 4809775
什么是DOI,文献DOI怎么找? 2572590
邀请新用户注册赠送积分活动 1528583
关于科研通互助平台的介绍 1487585