血管生成
EZH2型
角膜新生血管
氧化应激
新生血管
蛋白激酶B
PI3K/AKT/mTOR通路
化学
癌症研究
小干扰RNA
细胞生物学
生物
组蛋白
信号转导
生物化学
转染
基因
作者
Shan‐Shan Wan,Yumiao Pan,Wanju Yang,Zhuo‐Qun Rao,Yanning Yang
标识
DOI:10.1096/fj.201902814rrr
摘要
Enhancer of zeste homolog 2 (EZH2), a well-known methyltransferase, mediates histone H3 lysine 27 trimethylation (H3K27me3) and plays a vital role in ophthalmological disease. However, its role in corneal neovascularization (CoNV) remains unclear. In vitro and in vivo models were assessed in hypoxia-stimulated angiogenesis and in a mouse model of alkali burn-induced CoNV. Human umbilical vein endothelial cells (HUVECs) were cultured under hypoxic conditions and different reoxygenation times to identify the molecular mechanisms involved in this process. In this study, we found that EZH2 was positively related to corneal alkali burn-induced injury. Inhibition of EZH2 with 3-Deazaneplanocin A (DZNeP) alleviated corneal injury, including oxidative stress and neovascularization in vivo. Similarly, inhibition of EZH2 with either DZNeP or small interfering RNA (siRNA) exerted an inhibitory effect on hypoxia/reoxygenation (H/R)-induced oxidative stress and angiogenesis in HUVECs. Moreover, our study revealed that ablation of reactive oxygen species (ROS) with N-acetyl-cysteine suppressed angiogenesis in HUVECs exposed to H/R stimulation. Furthermore, Forkhead-box protein O3a (FoxO3a), which was positively associated with ROS production and angiogenesis, was elevated during H/R. This effect could be reversed through the suppression of the transcription activity of EZH2 with DZNeP or siRNA. In addition, the PI3K/Akt pathway, which is the upstream of FoxO3a, was activated in both DZNeP-treated mice and EZH2-inhibited HUVECs. Collectively, our results demonstrated that the inhibition of EZH2 alleviated corneal angiogenesis by inhibiting FoxO3a-dependent ROS production through the PI3K/Akt signaling pathway. These findings indicate that EZH2 may be a valuable therapeutic target for CoNV.
科研通智能强力驱动
Strongly Powered by AbleSci AI