亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

965. Partnering with State Health Departments: A Road Map for Collaboration Using Public Health Enhanced HIV/AIDS Reporting System (eHARS)

公共卫生 卫生部 医学 文档 保密 普通合伙企业 心理干预 机构审查委员会 护理部 业务 计算机科学 计算机安全 财务 外科 程序设计语言
作者
John Bassler,Emily B. Levitan,Lauren Ostrenga,Danita C Crear,Kendra Johnson,Gabrielle Cooper,Emma Sophia Kay,Mariel Parman,Ariann Nassel,Michael J. Mugavero,D. Scott Batey,Aadia Rana
出处
期刊:Open Forum Infectious Diseases [Oxford University Press]
卷期号:7 (Supplement_1): S512-S513
标识
DOI:10.1093/ofid/ofaa439.1151
摘要

Abstract Background Academic and public health partnerships are a critical component of the Ending the HIV Epidemic: A Plan for America (EHE). The Enhanced HIV/AIDS Reporting System (eHARS) is a standardized document-based surveillance database used by state health departments to collect and manage case reports, lab reports, and other documentation on persons living with HIV. Innovative analysis of this data can inform targeted, evidence-based interventions to achieve EHE objectives. We describe the development of a distributed data network strategy at an academic institution in partnership with public health departments to identify geographic differences in time to HIV viral suppression after HIV diagnosis using eHARS data. Figure 1. Distributed Data Network Methods This project was an outgrowth of work developed at the University of Alabama at Birmingham Center for AIDS Research (UAB CFAR) and existing relationships with the state health departments of Alabama, Louisiana, and Mississippi. At a project start-up meeting which included study investigators and state epidemiologists, core objectives and outcome measures were established, key eHARS variables were identified, and regulatory and confidentiality procedures were examined. The study methods were approved by the UAB Institutional Review Board (IRB) and all three state health department IRBs. Results A common data structure and data dictionary across the three states were developed. Detailed analysis protocols and statistical code were developed by investigators in collaboration with state health departments. Over the course of multiple in-person and virtual meetings, the program code was successfully piloted with one state health department. This generated initial summary statistics, including measures of central tendency, dispersion, and preliminary survival analysis. Conclusion We developed a successful academic and public health partnership creating a distributed data network that allows for innovative research using eHARS surveillance data while protecting sensitive health information. Next, state health departments will transmit summary statistics to UAB for combination using meta-analytic techniques. This approach can be adapted to inform delivery of targeted interventions at a regional and national level. Disclosures All Authors: No reported disclosures
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8秒前
lingdu发布了新的文献求助10
14秒前
隐形曼青应助科研通管家采纳,获得10
16秒前
遍空应助科研通管家采纳,获得20
16秒前
orixero应助科研通管家采纳,获得10
16秒前
37秒前
yshj完成签到 ,获得积分10
1分钟前
ZYP完成签到,获得积分10
1分钟前
爆米花应助lin采纳,获得10
1分钟前
1分钟前
iso发布了新的文献求助10
1分钟前
小蘑菇应助iso采纳,获得10
1分钟前
2分钟前
iso完成签到,获得积分10
2分钟前
lingdu发布了新的文献求助10
2分钟前
科目三应助科研通管家采纳,获得10
2分钟前
科研通AI5应助科研通管家采纳,获得10
2分钟前
搜集达人应助lingdu采纳,获得10
2分钟前
2分钟前
lingdu发布了新的文献求助10
3分钟前
玉米完成签到,获得积分10
3分钟前
可爱的函函应助玉米采纳,获得10
3分钟前
lingdu发布了新的文献求助10
4分钟前
KINGAZX完成签到 ,获得积分10
4分钟前
街道办柏阿姨完成签到 ,获得积分10
4分钟前
5分钟前
洁净思枫发布了新的文献求助10
5分钟前
5分钟前
5分钟前
ffff完成签到 ,获得积分10
5分钟前
壹贰完成签到 ,获得积分10
6分钟前
6分钟前
6分钟前
胡萝卜完成签到,获得积分10
6分钟前
clearsky应助科研通管家采纳,获得10
6分钟前
852应助科研通管家采纳,获得10
6分钟前
量子星尘发布了新的文献求助10
6分钟前
6分钟前
6分钟前
拼搏的秋玲完成签到,获得积分20
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nuclear Fuel Behaviour under RIA Conditions 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Parenchymal volume and functional recovery after clamped partial nephrectomy: potential discrepancies 300
Optimization and Learning via Stochastic Gradient Search 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4682323
求助须知:如何正确求助?哪些是违规求助? 4057809
关于积分的说明 12545519
捐赠科研通 3753261
什么是DOI,文献DOI怎么找? 2072912
邀请新用户注册赠送积分活动 1101909
科研通“疑难数据库(出版商)”最低求助积分说明 981211