Deep learning-empowered digital twin for visualized weld joint growth monitoring and penetration control

焊接 钨极气体保护焊 熔池 卷积神经网络 计算机科学 机器人焊接 接头(建筑物) 人工智能 电弧焊 计算机视觉 机械工程 工程类 结构工程
作者
Qiyue Wang,Wenhua Jiao,Yuming Zhang
出处
期刊:Journal of Manufacturing Systems [Elsevier]
卷期号:57: 429-439 被引量:118
标识
DOI:10.1016/j.jmsy.2020.10.002
摘要

Abstract This paper presents an innovative digital twin to monitor and control complex manufacturing processes by integrating deep learning which offers strong feature extraction and analysis abilities. Taking welding manufacturing as a case study, a deep learning-empowered digital twin is developed as the visualized digital replica of the physical welding for joint growth monitoring and penetration control. In such a system, the information available directly from sensors including weld pool images, arc images, welding current and arc voltage is collected in pulsed gas tungsten arc welding (GTAW-P). Then, the undirect information charactering the weld joint geometry and determining the welding quality, including the weld joint top-side bead width (TSBW) and back-side bead width (BSBW), is computed/estimated by traditional image processing methods and deep convolutional neural networks (CNNs) respectively. Compared with single image source, weld pool image or arc image, the CNN model performs better when taking the 2-channel composite image combined by both as the input and the state-of-the-art accuracy in BSBW prediction with mean square error (MSE) as 0.047 mm2 is obtained. Then, a decision-making strategy is developed to control the welding penetration to meet the quality requirement and applied successfully in various welding conditions. By modeling the weld joint cross section as an ellipse, the developed digital twin is visualized to offer a graphical user interface (GUI) for users perceiving the weld joint growth intuitively and effectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
徐逸斌完成签到 ,获得积分10
刚刚
yb完成签到 ,获得积分10
1秒前
2秒前
拼搏的白大褂完成签到 ,获得积分10
2秒前
orixero应助超级的身影采纳,获得10
3秒前
量子星尘发布了新的文献求助10
3秒前
南桑发布了新的文献求助10
5秒前
绿狗玩偶完成签到,获得积分20
6秒前
8秒前
传奇3应助香菜采纳,获得10
9秒前
meow完成签到 ,获得积分10
10秒前
李爱国应助科研通管家采纳,获得10
10秒前
虚幻紫伊完成签到 ,获得积分10
10秒前
英姑应助科研通管家采纳,获得80
10秒前
在水一方应助科研通管家采纳,获得10
10秒前
Z_2243应助科研通管家采纳,获得10
10秒前
Z_2243应助科研通管家采纳,获得10
10秒前
天天快乐应助科研通管家采纳,获得10
10秒前
共享精神应助科研通管家采纳,获得10
10秒前
共享精神应助科研通管家采纳,获得10
10秒前
Profeto发布了新的文献求助10
10秒前
思源应助科研通管家采纳,获得10
10秒前
小蘑菇应助科研通管家采纳,获得10
10秒前
爆米花应助科研通管家采纳,获得20
10秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
11秒前
852应助科研通管家采纳,获得10
11秒前
无极微光应助科研通管家采纳,获得20
11秒前
我是老大应助科研通管家采纳,获得10
11秒前
南桑完成签到,获得积分10
11秒前
Hello应助科研通管家采纳,获得10
11秒前
上官若男应助科研通管家采纳,获得10
11秒前
11秒前
桐桐应助科研通管家采纳,获得10
11秒前
华仔应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
11秒前
栀璃鸳挽完成签到,获得积分10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5421901
求助须知:如何正确求助?哪些是违规求助? 4536896
关于积分的说明 14155394
捐赠科研通 4453475
什么是DOI,文献DOI怎么找? 2442890
邀请新用户注册赠送积分活动 1434308
关于科研通互助平台的介绍 1411402