清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Radiomics Based on Lumbar Spine Magnetic Resonance Imaging to Detect Osteoporosis

骨量减少 骨质疏松症 磁共振成像 医学 接收机工作特性 腰椎 放射科 腰椎 核医学 腰椎 骨矿物 病理 外科 内科学
作者
Li He,Zhai Liu,Chunying Liu,Zhimei Gao,Qingyun Ren,Licun Lei,Jialiang Ren
出处
期刊:Academic Radiology [Elsevier BV]
卷期号:28 (6): e165-e171 被引量:55
标识
DOI:10.1016/j.acra.2020.03.046
摘要

Rationale and Objectives Signal intensity of the lumbar spine in magnetic resonance imaging (MRI) correlates to bone mineral density (BMD). This study aims to explore a lumbar spine magnetic resonance imaging based on the radiomics model for detecting osteoporosis. Materials and Methods A total of 109 patients, who underwent both dual-energy X-ray absorptiometry (DEXA) and MRI of the lumbar spine, were recruited. Among these patients, 38 patients were normal, 32 patients had osteopenia, and 39 patients had osteoporosis, according to the DEXA results. A total of 396 × 2 radiomic features were extracted from the T1WI and T2WI images of the segmentation images in the lumbar magnetic resonance imaging. The correlated radiomic features were selected to establish the radiomic classification model. Then, the classification models (based on T1WI, T2WI, and T1WI+T2WI) of normal vs. osteopenia, normal vs. osteoporosis, and osteopenia vs. osteoporosis were established. The performance of the classification models was evaluated through the estimated area under the receiver operating characteristic curve. Results The area under the receiver operating characteristic curves based on T1WI, T2WI, and T1WI+T2WI were 0.772, 0.772, and 0.810, respectively, for the models of normal vs. osteopenia, 0.724, 0.682, and 0.797, respectively, for the models of normal vs. osteoporosis, and 0.730, 0.734, and 0.769, respectively, for the models of osteopenia vs. osteoporosis. Conclusion Radiomic models established based on lumbar spine MRI can be used to detect osteoporosis. Signal intensity of the lumbar spine in magnetic resonance imaging (MRI) correlates to bone mineral density (BMD). This study aims to explore a lumbar spine magnetic resonance imaging based on the radiomics model for detecting osteoporosis. A total of 109 patients, who underwent both dual-energy X-ray absorptiometry (DEXA) and MRI of the lumbar spine, were recruited. Among these patients, 38 patients were normal, 32 patients had osteopenia, and 39 patients had osteoporosis, according to the DEXA results. A total of 396 × 2 radiomic features were extracted from the T1WI and T2WI images of the segmentation images in the lumbar magnetic resonance imaging. The correlated radiomic features were selected to establish the radiomic classification model. Then, the classification models (based on T1WI, T2WI, and T1WI+T2WI) of normal vs. osteopenia, normal vs. osteoporosis, and osteopenia vs. osteoporosis were established. The performance of the classification models was evaluated through the estimated area under the receiver operating characteristic curve. The area under the receiver operating characteristic curves based on T1WI, T2WI, and T1WI+T2WI were 0.772, 0.772, and 0.810, respectively, for the models of normal vs. osteopenia, 0.724, 0.682, and 0.797, respectively, for the models of normal vs. osteoporosis, and 0.730, 0.734, and 0.769, respectively, for the models of osteopenia vs. osteoporosis. Radiomic models established based on lumbar spine MRI can be used to detect osteoporosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
WangJL完成签到 ,获得积分10
22秒前
可夫司机完成签到 ,获得积分10
29秒前
BINBIN完成签到 ,获得积分10
34秒前
独特的高山完成签到 ,获得积分10
38秒前
QIN完成签到 ,获得积分10
52秒前
踏实谷蓝完成签到 ,获得积分10
1分钟前
研友_892kOL完成签到,获得积分10
1分钟前
海北完成签到 ,获得积分10
1分钟前
zhaoxiaonuan完成签到,获得积分10
1分钟前
沉静香氛完成签到 ,获得积分10
1分钟前
木南完成签到 ,获得积分10
1分钟前
大模型应助科研通管家采纳,获得10
1分钟前
Kai完成签到 ,获得积分10
1分钟前
瓦罐完成签到 ,获得积分10
2分钟前
loga80完成签到,获得积分0
2分钟前
午后狂睡完成签到 ,获得积分10
2分钟前
zhilianghui0807完成签到 ,获得积分0
2分钟前
2分钟前
小新AA发布了新的文献求助10
2分钟前
科研通AI6应助小新AA采纳,获得10
3分钟前
闲来逛逛007完成签到 ,获得积分10
3分钟前
嗷嗷嗷啊完成签到,获得积分10
3分钟前
123456完成签到 ,获得积分10
3分钟前
Bio完成签到,获得积分0
3分钟前
lql完成签到 ,获得积分10
4分钟前
YangSY完成签到,获得积分10
4分钟前
166完成签到 ,获得积分10
4分钟前
现实的俊驰完成签到 ,获得积分10
4分钟前
4分钟前
jeff发布了新的文献求助10
4分钟前
jeff完成签到,获得积分10
4分钟前
碗碗豆喵完成签到 ,获得积分10
4分钟前
天天快乐应助mwang012采纳,获得10
5分钟前
5分钟前
mwang012发布了新的文献求助10
5分钟前
缓慢的半莲完成签到 ,获得积分10
5分钟前
mwang012完成签到,获得积分10
5分钟前
老迟到的友桃完成签到 ,获得积分20
5分钟前
风中的觅儿完成签到,获得积分10
5分钟前
SCINEXUS完成签到,获得积分0
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
求中国石油大学(北京)图书馆的硕士论文,作者董晨,十年前搞太赫兹的 500
Vertebrate Palaeontology, 5th Edition 500
Narrative Method and Narrative form in Masaccio's Tribute Money 500
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
苏州地下水中新污染物及其转化产物的非靶向筛查 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4774148
求助须知:如何正确求助?哪些是违规求助? 4107282
关于积分的说明 12704811
捐赠科研通 3827976
什么是DOI,文献DOI怎么找? 2111881
邀请新用户注册赠送积分活动 1135841
关于科研通互助平台的介绍 1019199