独特性
数学
人工神经网络
控制理论(社会学)
理论(学习稳定性)
反应扩散系统
指数稳定性
李雅普诺夫函数
希尔伯特空间
扩散
应用数学
计算机科学
非线性系统
数学分析
国家(计算机科学)
算法
物理
热力学
量子力学
机器学习
人工智能
控制(管理)
作者
Tengda Wei,Xiaodi Li,Vladimir Stojanovic
出处
期刊:Nonlinear Dynamics
[Springer Science+Business Media]
日期:2021-01-22
卷期号:103 (2): 1733-1755
被引量:66
标识
DOI:10.1007/s11071-021-06208-6
摘要
In this paper, we focus on the global existence–uniqueness and input-to-state stability of the mild solution of impulsive reaction–diffusion neural networks with infinite distributed delays. First, the model of the impulsive reaction–diffusion neural networks with infinite distributed delays is reformulated in terms of an abstract impulsive functional differential equation in Hilbert space and the local existence–uniqueness of the mild solution on impulsive time interval is proven by the Picard sequence and semigroup theory. Then, the diffusion–dependent conditions for the global existence–uniqueness and input-to-state stability are established by the vector Lyapunov function and M-matrix where the infinite distributed delays are handled by a novel vector inequality. It shows that the ISS properties can be retained for the destabilizing impulses if there are no too short intervals between the impulses. Finally, three numerical examples verify the effectiveness of the theoretical results and that the reaction–diffusion benefits the input-to-state stability of the neural-network system.
科研通智能强力驱动
Strongly Powered by AbleSci AI