What patients like or dislike in physicians: Analyzing drivers of patient satisfaction and dissatisfaction using a digital topic modeling approach

能力(人力资源) 医疗保健 政府(语言学) 质量(理念) 心理学 医学 家庭医学 护理部 社会心理学 语言学 经济增长 认识论 哲学 经济
作者
Adnan Muhammad Shah,Xiangbin Yan,Samia Tariq,Mudassar Ali
出处
期刊:Information Processing and Management [Elsevier BV]
卷期号:58 (3): 102516-102516 被引量:49
标识
DOI:10.1016/j.ipm.2021.102516
摘要

A large volume of patients’ opinions—as online doctor reviews (ODRs)—are available online in order to access, analyze, and improve patients’ perceptions about the quality of care; however, this development needs to be explored further. Drawing on the two-factor theory, this paper aims to mine ODRs to explore the different determinants of patient satisfaction (PS) and patient dissatisfaction (PD) toward the United Kingdom healthcare services. This study collects reviews from a publicly available medical website Iwantgreatcare.org from January 2014 to December 2018, followed by the text mining method based on combining SentiNet and LDA to disclose the semantics of patients’ healthcare experiences. The proposed method found latent topics across the high-risk and low-risk disease category that revealed new insights into what patients value when consulting a physician and what they dislike. For high-risk and low-risk diseases, the determinants of PS were more specific to the hospital business process (hospital environment, location, hospital cafeteria servicescape, parking availability, and medical process, etc.) and doctor-related aspects (physician knowledge, competence, and attitudes, etc.). In contrast, patients’ concerns were most commonly related to their treatment experience and staff bedside manners for both disease categories. Finally, the classification results revealed that the proposed model, which analyzes patient opinion toward different aspects of care, outperformed other state-of-the-art models, with the highest classification F1-score of 88%. The study findings provide a clue for doctors, hospitals, and government officials to enhance PS and minimize PD by addressing their needs and improve the quality of care across different types of diseases, particularly in the current pandemic era of COVID-19.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
李喜喜发布了新的文献求助10
1秒前
XLC发布了新的文献求助30
4秒前
善学以致用应助李喜喜采纳,获得10
6秒前
善学以致用应助欢呼流沙采纳,获得10
7秒前
JazzWon完成签到,获得积分10
7秒前
7秒前
无花果应助迅速的八宝粥采纳,获得10
8秒前
8秒前
专注的问筠完成签到,获得积分10
9秒前
小猛人发布了新的文献求助10
13秒前
zz发布了新的文献求助10
14秒前
怕黑道消完成签到 ,获得积分10
15秒前
施储完成签到,获得积分10
16秒前
情怀应助喝酒的二胖采纳,获得10
17秒前
研友_VZG7GZ应助XLC采纳,获得30
18秒前
科研通AI5应助小猛人采纳,获得10
20秒前
21秒前
小马甲应助zz采纳,获得10
21秒前
23秒前
23秒前
执着的采枫发布了新的文献求助200
25秒前
25秒前
LU完成签到,获得积分10
25秒前
25秒前
26秒前
shelemi发布了新的文献求助10
27秒前
whynot发布了新的文献求助10
27秒前
孙振亚发布了新的文献求助10
29秒前
29秒前
大淘发布了新的文献求助10
30秒前
小马甲应助迅速的八宝粥采纳,获得10
31秒前
无限达完成签到,获得积分10
31秒前
32秒前
李喜喜发布了新的文献求助10
33秒前
KKIII发布了新的文献求助10
37秒前
shusen完成签到,获得积分10
38秒前
在水一方应助李喜喜采纳,获得10
39秒前
所所应助lei采纳,获得10
41秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Platinum-group elements : mineralogy, geology, recovery 260
Geopora asiatica sp. nov. from Pakistan 230
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780569
求助须知:如何正确求助?哪些是违规求助? 3326080
关于积分的说明 10225440
捐赠科研通 3041148
什么是DOI,文献DOI怎么找? 1669215
邀请新用户注册赠送积分活动 799028
科研通“疑难数据库(出版商)”最低求助积分说明 758669