Measuring Intangible Capital with Market Prices

业务 首都(建筑) 经济 货币经济学 地理 考古
作者
Michael Ewens,Ryan H. Peters,Sean Wang
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
被引量:39
标识
DOI:10.1287/mnsc.2021.02058
摘要

Accounting standards prohibit internally created knowledge and organizational capital from being disclosed on firm balance sheets. As a result, balance sheets exhibit downward biases that have become exacerbated by increasing levels of intangible investments. To offset these biases, researchers must estimate the value of these off-balance sheet intangibles by capitalizing prior flows of research and development (R&D) and selling, general, and administrative (SG&A). In doing so, a set of capitalization parameters must be assumed (i.e., the R&D depreciation rate and the fraction of SG&A that represents a long-lived asset). We estimate these parameters using market prices from firm exits and use them to capitalize intangibles for a comprehensive panel of firms from 1978 to 2017. We then use a series of validation tests to examine the performance of our intangible capital stocks versus those developed from commonly used parameters. On average, our estimates of intangible capital are 15% smaller than estimates from status quo parameters while exhibiting larger variation across industry. Intangible capital stocks derived from exit price parameters outperform existing measures when explaining market enterprise values and identifying human capital risk. Adjusting book values with exit-based intangible capital stocks markedly attenuates well-documented biases in market-to-book and return on equity ratios while increasing the precision of the high-minus-low asset pricing factor. We conclude that our capitalization parameters create intangible stocks that perform equal to or better than status quo measures in various applications. This paper was accepted by Victoria Ivashina, finance. Supplemental Material: The online appendix and data files are available at https://doi.org/10.1287/mnsc.2021.02058 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
fangyuan发布了新的文献求助10
2秒前
新鲜事完成签到,获得积分10
2秒前
3秒前
li完成签到,获得积分10
4秒前
4秒前
4秒前
aaa发布了新的文献求助10
6秒前
6秒前
6秒前
YuSHhan完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
无疾而终发布了新的文献求助50
8秒前
10秒前
勤劳小蕾发布了新的文献求助30
10秒前
逺山長发布了新的文献求助10
10秒前
风清扬发布了新的文献求助10
12秒前
12秒前
12秒前
一蓑烟雨任平生应助QR采纳,获得10
12秒前
yanliu95完成签到,获得积分10
13秒前
13秒前
14秒前
loributterfly发布了新的文献求助10
14秒前
14秒前
蝴蝶与猫完成签到 ,获得积分10
15秒前
嗯哼应助珑一采纳,获得30
15秒前
15秒前
量子星尘发布了新的文献求助10
16秒前
科研通AI5应助科研通管家采纳,获得10
18秒前
研友_VZG7GZ应助科研通管家采纳,获得10
18秒前
汉堡包应助科研通管家采纳,获得10
18秒前
科研通AI5应助科研通管家采纳,获得10
19秒前
科研通AI2S应助科研通管家采纳,获得10
19秒前
科研通AI6应助科研通管家采纳,获得10
19秒前
浮光应助科研通管家采纳,获得50
19秒前
Akim应助科研通管家采纳,获得10
19秒前
共享精神应助科研通管家采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5073193
求助须知:如何正确求助?哪些是违规求助? 4293286
关于积分的说明 13378053
捐赠科研通 4114770
什么是DOI,文献DOI怎么找? 2253101
邀请新用户注册赠送积分活动 1257931
关于科研通互助平台的介绍 1190770