Search Personalization Using Machine Learning

个性化 计算机科学 可扩展性 排名(信息检索) 集合(抽象数据类型) 情报检索 学习排名 机器学习 数据库 万维网 程序设计语言
作者
Hema Yoganarasimhan
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:66 (3): 1045-1070 被引量:141
标识
DOI:10.1287/mnsc.2018.3255
摘要

Firms typically use query-based search to help consumers find information/products on their websites. We consider the problem of optimally ranking a set of results shown in response to a query. We propose a personalized ranking mechanism based on a user’s search and click history. Our machine-learning framework consists of three modules: (a) feature generation, (b) normalized discounted cumulative gain–based LambdaMART algorithm, and (c) feature selection wrapper. We deploy our framework on large-scale data from a leading search engine using Amazon EC2 servers and present results from a series of counterfactual analyses. We find that personalization improves clicks to the top position by 3.5% and reduces the average error in rank of a click by 9.43% over the baseline. Personalization based on short-term history or within-session behavior is shown to be less valuable than long-term or across-session personalization. We find that there is significant heterogeneity in returns to personalization as a function of user history and query type. The quality of personalized results increases monotonically with the length of a user’s history. Queries can be classified based on user intent as transactional, informational, or navigational, and the former two benefit more from personalization. We also find that returns to personalization are negatively correlated with a query’s past average performance. Finally, we demonstrate the scalability of our framework and derive the set of optimal features that maximizes accuracy while minimizing computing time. This paper was accepted by Juanjuan Zhang, marketing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kyt完成签到,获得积分10
1秒前
果小镁完成签到,获得积分10
1秒前
帆帆羊完成签到,获得积分20
2秒前
3秒前
果小镁发布了新的文献求助10
4秒前
王永伟关注了科研通微信公众号
4秒前
5秒前
Shirley完成签到,获得积分10
5秒前
等风的人发布了新的文献求助10
6秒前
scc发布了新的文献求助20
6秒前
honeym发布了新的文献求助10
8秒前
修炼成绝完成签到,获得积分10
8秒前
辽宁科技大学完成签到 ,获得积分10
8秒前
小马甲应助HJJHJH采纳,获得10
8秒前
9秒前
厚朴发布了新的文献求助100
9秒前
10秒前
阿橘完成签到,获得积分10
10秒前
11秒前
bkagyin应助zzz采纳,获得30
13秒前
13秒前
大气从蕾发布了新的文献求助10
14秒前
初夏发布了新的文献求助10
15秒前
ww完成签到 ,获得积分10
15秒前
呜呜完成签到,获得积分10
15秒前
17秒前
英俊的铭应助等风的人采纳,获得10
17秒前
19秒前
ZOZO完成签到,获得积分10
19秒前
风中小刺猬完成签到,获得积分10
19秒前
小鹿哐哐跑完成签到,获得积分10
21秒前
cc完成签到,获得积分10
21秒前
22秒前
luhaiyan应助ZOZO采纳,获得10
22秒前
萝卜干完成签到,获得积分10
23秒前
RAY发布了新的文献求助80
24秒前
曾宪俊完成签到 ,获得积分10
26秒前
28秒前
大气从蕾完成签到,获得积分10
28秒前
xiaoq发布了新的文献求助10
28秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
中国兽药产业发展报告 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Pediatric Injectable Drugs 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4450811
求助须知:如何正确求助?哪些是违规求助? 3918517
关于积分的说明 12162562
捐赠科研通 3568523
什么是DOI,文献DOI怎么找? 1959613
邀请新用户注册赠送积分活动 999022
科研通“疑难数据库(出版商)”最低求助积分说明 894059