Quantifying Feature Importance for Detecting Depression using Random Forest

随机森林 计算机科学 加权 特征选择 机器学习 人工智能 分类器(UML) 特征(语言学) 决策树 数据挖掘 模式识别(心理学) 语言学 医学 放射科 哲学
作者
Hatoon S. AlSagri,Mourad Ykhlef
出处
期刊:International Journal of Advanced Computer Science and Applications [Science and Information Organization]
卷期号:11 (5) 被引量:11
标识
DOI:10.14569/ijacsa.2020.0110577
摘要

Feature selection based on importance is a funda-mental step in machine learning models because it serves as a vital technique to orient the use of variables to what is most efficient and effective for a given machine learning model. In this study, an explainable machine learning model based on Random forest, is built to address the problem of identification of depression level for Twitter users. This model reflects its transparency through calculating its feature importance. There are several techniques to quantify the importance of features. However, in this study, random forest is used as both a classifier, which has over-performing aspects over many classifiers such as decision trees, and a method for weighting the input features as their importance imply. In this study, the importance of features is measured using different techniques including random forest, and the results of these techniques are compared. Furthermore, feature importance uses the concept of weighting the input variables inside a complete system for recommending a solution for depressed persons. The experimental results confirm the superiority of random forest over other classifiers using three different methods for measuring the features importance. The accuracy of random forest classification reached 84.7%, and the importance of features increased the classifier accuracy to 84.9%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
3秒前
4秒前
MikuMiya完成签到,获得积分10
5秒前
啦啦啦啦啦完成签到,获得积分10
8秒前
香蕉觅云应助奕奕采纳,获得10
8秒前
999999发布了新的文献求助10
9秒前
kagaminelen发布了新的文献求助10
9秒前
韶邑完成签到,获得积分10
11秒前
张菁完成签到,获得积分10
14秒前
小白完成签到,获得积分10
14秒前
15秒前
达da完成签到,获得积分10
15秒前
Loik发布了新的文献求助10
17秒前
17秒前
17秒前
17秒前
谨慎鞅完成签到,获得积分10
18秒前
上官若男应助整齐的海瑶采纳,获得200
18秒前
18秒前
psychedeng完成签到,获得积分10
19秒前
小蘑菇应助伶俐惜萱采纳,获得10
20秒前
爆米花应助举一个梨子采纳,获得10
21秒前
markzhang发布了新的文献求助10
21秒前
21秒前
奕奕发布了新的文献求助10
22秒前
23秒前
代小葵发布了新的文献求助10
23秒前
甜甜芾应助Loik采纳,获得10
25秒前
26秒前
笨笨松发布了新的文献求助10
26秒前
复杂的扬发布了新的文献求助10
27秒前
WaitP应助Vicki采纳,获得10
27秒前
ww完成签到,获得积分10
27秒前
markzhang完成签到,获得积分10
28秒前
佐佐的2xL完成签到,获得积分10
28秒前
lan完成签到,获得积分10
28秒前
稳重的雅绿完成签到 ,获得积分10
30秒前
谦让涵菡完成签到 ,获得积分10
30秒前
华仔应助笨笨松采纳,获得10
31秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799386
求助须知:如何正确求助?哪些是违规求助? 3344983
关于积分的说明 10322805
捐赠科研通 3061457
什么是DOI,文献DOI怎么找? 1680341
邀请新用户注册赠送积分活动 807036
科研通“疑难数据库(出版商)”最低求助积分说明 763462