A Recognition Method of Aggressive Driving Behavior Based on Ensemble Learning

人工智能 计算机科学 机器学习 集成学习 分类器(UML) 卷积神经网络 深度学习 人工神经网络 模式识别(心理学) 随机子空间法 班级(哲学)
作者
Hanqing Wang,Xiaoyuan Wang,Junyan Han,Hui Xiang,Hao Li,Yang Zhang,Shangqing Li
出处
期刊:Sensors [Multidisciplinary Digital Publishing Institute]
卷期号:22 (2): 644-644 被引量:4
标识
DOI:10.3390/s22020644
摘要

Aggressive driving behavior (ADB) is one of the main causes of traffic accidents. The accurate recognition of ADB is the premise to timely and effectively conduct warning or intervention to the driver. There are some disadvantages, such as high miss rate and low accuracy, in the previous data-driven recognition methods of ADB, which are caused by the problems such as the improper processing of the dataset with imbalanced class distribution and one single classifier utilized. Aiming to deal with these disadvantages, an ensemble learning-based recognition method of ADB is proposed in this paper. First, the majority class in the dataset is grouped employing the self-organizing map (SOM) and then are combined with the minority class to construct multiple class balance datasets. Second, three deep learning methods, including convolutional neural networks (CNN), long short-term memory (LSTM), and gated recurrent unit (GRU), are employed to build the base classifiers for the class balance datasets. Finally, the ensemble classifiers are combined by the base classifiers according to 10 different rules, and then trained and verified using a multi-source naturalistic driving dataset acquired by the integrated experiment vehicle. The results suggest that in terms of the recognition of ADB, the ensemble learning method proposed in this research achieves better performance in accuracy, recall, and F1-score than the aforementioned typical deep learning methods. Among the ensemble classifiers, the one based on the LSTM and the Product Rule has the optimal performance, and the other one based on the LSTM and the Sum Rule has the suboptimal performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
科研通AI5应助大大怪将军采纳,获得10
3秒前
4秒前
恭喜发布了新的文献求助10
5秒前
Yanping发布了新的文献求助10
9秒前
海聪天宇完成签到,获得积分10
10秒前
慕青应助chyy采纳,获得10
10秒前
xzn完成签到,获得积分10
13秒前
jenningseastera应助wrf3采纳,获得50
13秒前
彭于晏应助科研通管家采纳,获得10
13秒前
SYLH应助科研通管家采纳,获得10
13秒前
SYLH应助科研通管家采纳,获得10
13秒前
上官若男应助科研通管家采纳,获得10
13秒前
bkagyin应助科研通管家采纳,获得10
13秒前
彭于晏应助科研通管家采纳,获得10
13秒前
完美世界应助科研通管家采纳,获得10
13秒前
Orange应助科研通管家采纳,获得10
14秒前
科研通AI2S应助科研通管家采纳,获得30
14秒前
乐乐应助科研通管家采纳,获得10
14秒前
情怀应助科研通管家采纳,获得10
14秒前
SYLH应助科研通管家采纳,获得10
14秒前
14秒前
英俊的铭应助科研通管家采纳,获得10
14秒前
大模型应助科研通管家采纳,获得10
14秒前
SYLH应助科研通管家采纳,获得10
14秒前
斯寜应助科研通管家采纳,获得10
14秒前
DAVE应助科研通管家采纳,获得10
14秒前
完美世界应助科研通管家采纳,获得10
15秒前
JamesPei应助科研通管家采纳,获得10
15秒前
小二郎应助慕山采纳,获得200
15秒前
liliwang关注了科研通微信公众号
15秒前
英姑应助柚柚采纳,获得10
16秒前
鱼鱼鱼鱼完成签到,获得积分20
16秒前
淡定访琴完成签到,获得积分10
17秒前
17秒前
19秒前
西瓜完成签到 ,获得积分10
25秒前
jenningseastera应助西门长海采纳,获得10
28秒前
完美世界应助可爱的彩虹采纳,获得10
28秒前
mang_er发布了新的文献求助30
29秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3802551
求助须知:如何正确求助?哪些是违规求助? 3348202
关于积分的说明 10337121
捐赠科研通 3064142
什么是DOI,文献DOI怎么找? 1682405
邀请新用户注册赠送积分活动 808168
科研通“疑难数据库(出版商)”最低求助积分说明 763997