Accurate Sensing of Power Transformer Faults From Dissolved Gas Data Using Random Forest Classifier Aided by Data Clustering Method

五角形 聚类分析 溶解气体分析 质心 数据库扫描 模式识别(心理学) 随机森林 变压器 分类器(UML) 计算机科学 欧几里德距离 数据挖掘 人工智能 工程类 数学 变压器油 模糊聚类 电气工程 电压 树冠聚类算法 几何学
作者
Nasirul Haque,Aadil Jamshed,Kingshuk Chatterjee,Soumya Chatterjee
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:22 (6): 5902-5910 被引量:31
标识
DOI:10.1109/jsen.2022.3149409
摘要

In this paper, a novel approach for accurate sensing of incipient faults occurring in power transformers is proposed using dissolved gas analysis (DGA) technique. The Duval pentagon method is a popular technique often used to interpret faults occurring in a power transformer based on DGA data. However, one potential limitation of conventional Duval pentagon method is the presence of rigid fault boundaries within the pentagon which often lead to misinterpretations, leading to poor detection accuracy. Considering this issue, in this paper a modification of Duval pentagon method is proposed, where instead of using rigidly separated distinct fault zones, a density-based clustering (DBSCAN) approach is used to increase the resiliency and the accuracy of fault detection technique. At first, DBSCAN is used to form different fault clusters within the Duval pentagon. Following this, the centroid corresponding to each fault cluster within the Duval pentagon is determined. For accurate sensing of incipient transformer faults Euclidean distances between the respective centroids and the fault points of the input DGA data are proposed as new distinguishing features in this work. The proposed distance parameters combined with the relative gas concentration measures are finally served as input features to the random forest (RF) classifier, which returned very high classification accuracy. The performance of the RF classifier is also compared with three benchmark machine classifiers, all of which delivered acceptable results. The proposed method can be used for sensing of power transformer faults using Duval pentagon method with increased accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
灯火阑珊发布了新的文献求助10
刚刚
3秒前
源源完成签到 ,获得积分10
4秒前
科研通AI5应助莫三颜采纳,获得10
4秒前
4秒前
5秒前
冰激凌完成签到,获得积分10
6秒前
6秒前
6秒前
所所应助二十采纳,获得10
6秒前
传奇3应助15778881974采纳,获得10
7秒前
7秒前
CodeCraft应助潺潺流水采纳,获得10
8秒前
天天发布了新的文献求助10
9秒前
9秒前
zws发布了新的文献求助10
10秒前
10秒前
玩命的朋友完成签到,获得积分10
11秒前
十三完成签到,获得积分10
12秒前
科研通AI5应助狄绮晴采纳,获得50
13秒前
元友容完成签到 ,获得积分10
14秒前
cdercder完成签到,获得积分0
14秒前
孤剑事离程完成签到,获得积分20
14秒前
16秒前
17秒前
22秒前
wanci应助小马采纳,获得10
24秒前
DAKUMA应助麻辣烫采纳,获得10
25秒前
26秒前
Owen应助狄绮晴采纳,获得10
27秒前
在水一方应助十三采纳,获得10
27秒前
yekindar完成签到,获得积分10
27秒前
灯火阑珊完成签到,获得积分10
30秒前
慕青应助赛猪采纳,获得30
30秒前
零下负七完成签到,获得积分10
30秒前
32秒前
33秒前
33秒前
34秒前
36秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Pteromalidae 600
Images that translate 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842753
求助须知:如何正确求助?哪些是违规求助? 3384782
关于积分的说明 10537264
捐赠科研通 3105328
什么是DOI,文献DOI怎么找? 1710227
邀请新用户注册赠送积分活动 823561
科研通“疑难数据库(出版商)”最低求助积分说明 774137