Swin UNETR: Swin Transformers for Semantic Segmentation of Brain Tumors in MRI Images

计算机科学 分割 人工智能 编码器 变压器 卷积神经网络 尺度空间分割 图像分割 基于分割的对象分类 计算机视觉 模式识别(心理学) 操作系统 量子力学 物理 电压
作者
Ali Hatamizadeh,Vishwesh Nath,Yucheng Tang,Dong Yang,Holger R. Roth,Daguang Xu
出处
期刊:Lecture Notes in Computer Science 卷期号:: 272-284 被引量:277
标识
DOI:10.1007/978-3-031-08999-2_22
摘要

Semantic segmentation of brain tumors is a fundamental medical image analysis task involving multiple MRI imaging modalities that can assist clinicians in diagnosing the patient and successively studying the progression of the malignant entity. In recent years, Fully Convolutional Neural Networks (FCNNs) approaches have become the de facto standard for 3D medical image segmentation. The popular “U-shaped” network architecture has achieved state-of-the-art performance benchmarks on different 2D and 3D semantic segmentation tasks and across various imaging modalities. However, due to the limited kernel size of convolution layers in FCNNs, their performance of modeling long-range information is sub-optimal, and this can lead to deficiencies in the segmentation of tumors with variable sizes. On the other hand, transformer models have demonstrated excellent capabilities in capturing such long-range information in multiple domains, including natural language processing and computer vision. Inspired by the success of vision transformers and their variants, we propose a novel segmentation model termed Swin UNEt TRansformers (Swin UNETR). Specifically, the task of 3D brain tumor semantic segmentation is reformulated as a sequence to sequence prediction problem wherein multi-modal input data is projected into a 1D sequence of embedding and used as an input to a hierarchical Swin transformer as the encoder. The swin transformer encoder extracts features at five different resolutions by utilizing shifted windows for computing self-attention and is connected to an FCNN-based decoder at each resolution via skip connections. We have participated in BraTS 2021 segmentation challenge, and our proposed model ranks among the top-performing approaches in the validation phase. Code: https://monai.io/research/swin-unetr .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
RGQ666发布了新的文献求助10
刚刚
blklxt发布了新的文献求助10
1秒前
2秒前
哈哈完成签到,获得积分10
3秒前
3秒前
3秒前
3秒前
3秒前
Dr.Zou发布了新的文献求助30
7秒前
7秒前
8秒前
8秒前
zhanghhsnow发布了新的文献求助30
8秒前
冷傲迎梦发布了新的文献求助10
9秒前
luohan发布了新的文献求助10
9秒前
欢欢完成签到,获得积分10
10秒前
研友_LX7lK8完成签到 ,获得积分10
11秒前
Akim应助塵埃采纳,获得10
12秒前
共享精神应助塵埃采纳,获得10
12秒前
研友_VZG7GZ应助塵埃采纳,获得10
12秒前
FashionBoy应助塵埃采纳,获得10
12秒前
氯雷他定发布了新的文献求助10
13秒前
汉堡包应助小猫在钓鱼采纳,获得10
15秒前
鹿鹿完成签到,获得积分10
16秒前
LJHUA完成签到,获得积分10
20秒前
20秒前
天草诺完成签到,获得积分10
22秒前
英俊的铭应助自由伊采纳,获得30
22秒前
哈哈发布了新的文献求助10
22秒前
霜沐完成签到,获得积分10
24秒前
serenity完成签到 ,获得积分10
24秒前
守夜人发布了新的文献求助20
24秒前
25秒前
科研通AI5应助LZY采纳,获得30
25秒前
逆旅淹留完成签到,获得积分10
25秒前
bingbing发布了新的文献求助10
27秒前
28秒前
28秒前
小马甲应助Lee采纳,获得30
29秒前
英俊的铭应助lele033086采纳,获得10
29秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799266
求助须知:如何正确求助?哪些是违规求助? 3344916
关于积分的说明 10322625
捐赠科研通 3061423
什么是DOI,文献DOI怎么找? 1680315
邀请新用户注册赠送积分活动 806970
科研通“疑难数据库(出版商)”最低求助积分说明 763451