Sparse DDK: A Data-Driven Decorrelation Filter for GRACE Level-2 Products

去相关 算法 计算机科学 滤波器(信号处理) 协方差 离群值 协方差矩阵 数学 核(代数) 统计 人工智能 计算机视觉 组合数学
作者
Nijia Qian,Guobin Chang,P. Ditmar,Jingxiang Gao,Zhengqiang Wei
出处
期刊:Remote Sensing [Multidisciplinary Digital Publishing Institute]
卷期号:14 (12): 2810-2810 被引量:5
标识
DOI:10.3390/rs14122810
摘要

High-frequency and correlated noise filtering is one of the important preprocessing steps for GRACE level-2 products before calculating mass anomaly. Decorrelation and denoising kernel (DDK) filters are usually considered as such optimal filters to solve this problem. In this work, a sparse DDK filter is proposed. This is achieved by replacing Tikhonov regularization in traditional DDK filters with weighted L1 norm regularization. The proposed sparse DDK filter adopts a time-varying error covariance matrix, while the equivalent signal covariance matrix is adaptively determined by the Gravity Recovery and Climate Experiment (GRACE) monthly solution. The covariance matrix of the sparse DDK filtered solution is also developed from the Bayesian and error-propagation perspectives, respectively. Furthermore, we also compare and discuss the properties of different filters. The proposed sparse DDK has all the advantages of traditional filters, such as time-varying, location inhomogeneity, and anisotropy, etc. In addition, the filtered solution is sparse; that is, some high-degree and high-order terms are strictly zeros. This sparsity is beneficial in the following sense: high-degree and high-order sparsity mean that the dominating noise in high-degree and high-order terms is completely suppressed, at a slight cost that the tiny signals of these terms are also discarded. The Center for Space Research (CSR) GRACE monthly solutions and their error covariance matrices, from January 2004 to December 2010, are used to test the performance of the proposed sparse DDK filter. The results show that the sparse DDK can effectively decorrelate and denoise these data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
瀚子发布了新的文献求助10
5秒前
会游泳的猪完成签到,获得积分10
7秒前
称心的问薇完成签到,获得积分10
8秒前
ZHY发布了新的文献求助10
8秒前
9秒前
懂梦完成签到,获得积分10
10秒前
瀚子完成签到,获得积分10
10秒前
Akim应助lcy采纳,获得10
11秒前
zyw0532完成签到,获得积分10
12秒前
Orange应助妮妮采纳,获得10
14秒前
花开无声完成签到,获得积分10
14秒前
WERTUYU发布了新的文献求助10
15秒前
充电宝应助jx采纳,获得10
15秒前
Aaron完成签到,获得积分10
17秒前
STEAD完成签到,获得积分10
18秒前
18秒前
22秒前
爆米花应助神勇中道采纳,获得10
23秒前
追寻的踏歌完成签到,获得积分10
24秒前
TYolo完成签到,获得积分10
24秒前
drift完成签到,获得积分10
25秒前
在水一方应助WHL采纳,获得30
25秒前
后会无期完成签到,获得积分10
26秒前
liming发布了新的文献求助10
27秒前
科研通AI5应助TYolo采纳,获得10
28秒前
友好凡霜发布了新的文献求助10
29秒前
30秒前
妮妮发布了新的文献求助10
34秒前
ddfighting发布了新的文献求助10
35秒前
WERTUYU完成签到 ,获得积分10
36秒前
冷艳的书雪完成签到,获得积分20
36秒前
Singularity应助ZHY采纳,获得10
37秒前
李娜完成签到,获得积分10
38秒前
一一应助iuhgnor采纳,获得10
38秒前
40秒前
尛破孩完成签到,获得积分10
43秒前
Raye完成签到 ,获得积分20
46秒前
务实安白完成签到 ,获得积分10
46秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
协和专家大医说:医话肿瘤 400
Pharmacological profile of sulodexide 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3805231
求助须知:如何正确求助?哪些是违规求助? 3350217
关于积分的说明 10347782
捐赠科研通 3066093
什么是DOI,文献DOI怎么找? 1683536
邀请新用户注册赠送积分活动 809047
科研通“疑难数据库(出版商)”最低求助积分说明 765205