Closing the loop for patients with Parkinson disease: where are we?

左旋多巴 医学 帕金森病 可穿戴计算机 疾病 物理医学与康复 加药 重症监护医学 计算机科学 药理学 内科学 嵌入式系统
作者
Hazhir Teymourian,Farshad Tehrani,Katherine Longardner,Kuldeep Mahato,Tatiana Podhajny,Jong‐Min Moon,K. Yugender Goud,Juliane R. Sempionatto,Irene Litvan,Joseph Wang
出处
期刊:Nature Reviews Neurology [Nature Portfolio]
卷期号:18 (8): 497-507 被引量:46
标识
DOI:10.1038/s41582-022-00674-1
摘要

Although levodopa remains the most efficacious symptomatic therapy for Parkinson disease (PD), management of levodopa treatment during the advanced stages of the disease is extremely challenging. This difficulty is a result of levodopa's short half-life, a progressive narrowing of the therapeutic window, and major inter-patient and intra-patient variations in the dose-response relationship. Therefore, a suitable alternative to repeated oral administration of levodopa is being sought. Recent research efforts have focused on the development of novel levodopa delivery strategies and wearable physical sensors that track symptoms and disease progression. However, the need for methods to monitor the levels of levodopa present in the body in real time has been overlooked. Advances in chemical sensor technology mean that the development of wearable and mobile biosensors for continuous or frequent levodopa measurements is now possible. Such levodopa monitoring could help to deliver personalized and timely medication dosing to alleviate treatment-related fluctuations in the symptoms of PD. Therefore, with the aim of optimizing therapeutic management of PD and improving the quality of life of patients, we share our vision of a future closed-loop autonomous wearable 'sense-and-act' system. This system consists of a network of physical and chemical sensors coupled with a levodopa delivery device and is guided by effective big data fusion algorithms and machine learning methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
孟春纪事发布了新的文献求助10
1秒前
无妄生欢关注了科研通微信公众号
2秒前
sci喷涌而出完成签到,获得积分10
2秒前
李小聪完成签到 ,获得积分10
2秒前
lcychem发布了新的文献求助10
3秒前
3秒前
3秒前
安详安寒发布了新的文献求助10
4秒前
4秒前
叽歪提完成签到,获得积分10
5秒前
5秒前
5秒前
热心的皮发布了新的文献求助10
5秒前
爆米花应助长歌采纳,获得10
5秒前
6秒前
6秒前
苹果发布了新的文献求助10
6秒前
6秒前
7秒前
ccccc发布了新的文献求助30
7秒前
王进发布了新的文献求助10
8秒前
8秒前
YUAN发布了新的文献求助30
8秒前
GWT完成签到,获得积分10
8秒前
完美世界应助将将采纳,获得10
8秒前
8秒前
cmh完成签到,获得积分20
8秒前
胖胖完成签到,获得积分10
9秒前
香蕉觅云应助漫漫采纳,获得10
9秒前
苏晓醒发布了新的文献求助10
9秒前
专注可兰发布了新的文献求助10
10秒前
神圣先知发布了新的文献求助10
11秒前
FashionBoy应助wwho_O采纳,获得10
11秒前
树下风源完成签到,获得积分10
11秒前
12秒前
善学以致用应助lee采纳,获得10
12秒前
12秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
Hydropower Nation: Dams, Energy, and Political Changes in Twentieth-Century China 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3805810
求助须知:如何正确求助?哪些是违规求助? 3350734
关于积分的说明 10350610
捐赠科研通 3066591
什么是DOI,文献DOI怎么找? 1683999
邀请新用户注册赠送积分活动 809197
科研通“疑难数据库(出版商)”最低求助积分说明 765407