Prediction of rapid chloride penetration resistance of metakaolin based high strength concrete using light GBM and XGBoost models by incorporating SHAP analysis

偏高岭土 氯化物 抗压强度 渗透(战争) 材料科学 预测建模 复合材料 数学 统计 冶金 运筹学
作者
Anas Abdulalim Alabdullah,Mudassir Iqbal,Muhammad Zahid,Kaffayatullah Khan,Muhammad Nasir Amin,Fazal E. Jalal
出处
期刊:Construction and Building Materials [Elsevier BV]
卷期号:345: 128296-128296 被引量:173
标识
DOI:10.1016/j.conbuildmat.2022.128296
摘要

This study investigates the non-linear capabilities of two machine learning prediction models, namely Light GBM and XGBoost, for predicting the values of Rapid Chloride Penetration Test (RCPT). Chloride penetration is one of the most significant issues affecting reinforced concrete (RC) structures, which necessitate frequent maintenance and repair. The mix design of concrete play a vital role in the formation of pore structure that is relatively more resistant to chloride attacks. For estimating the chloride resistance of concrete, 201 experimental records, incorporating aging of concrete, binder content, water-binder ratio, percentage of metakaolin, and content of fine and coarse aggregates as input variables. The models were trained using grid search optimization for tuning setting parameters to yield the best performance for the models. The performance of the models using statistical indices indicated LightGBM surpasses in prediction accuracy as compared to XGBoost model. The coefficient of determination (R2) values revealed 0.9738 and 0.9379 for LightGBM and XGBoost models, respectively. The minimum value of MAE was recorded for the training data of the LightGBM model equalling 172.7 C. The best fit model, i.e., the LightGBM model, was used for SHAP analysis to see the relative importance of contributing attributes and optimization of input variables. The SHAP analysis revealed fc’, aging, and W/B ratio as most significant in yielding RCPT, whereas individual interpretation of Shapley values showed that W/B ratio of 0.30 – 0.35 and 15% MK replacement highly resisted chloride penetration at higher compressive strength values.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
谷雨下完成签到,获得积分10
1秒前
张冰倩发布了新的文献求助10
2秒前
mm发布了新的文献求助10
3秒前
5秒前
pp关闭了pp文献求助
6秒前
6秒前
jing发布了新的文献求助20
7秒前
8秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
umber关注了科研通微信公众号
10秒前
忧虑的天川完成签到 ,获得积分10
11秒前
华仔应助chillax采纳,获得10
11秒前
11秒前
11秒前
shanhai发布了新的文献求助10
11秒前
酸汤肥牛发布了新的文献求助30
11秒前
兴奋大开发布了新的文献求助10
13秒前
zheng完成签到,获得积分20
14秒前
15秒前
zzzy完成签到 ,获得积分10
15秒前
15秒前
15秒前
打打应助久桃采纳,获得10
16秒前
四叶曦完成签到,获得积分10
16秒前
chuchu完成签到,获得积分10
16秒前
赫绮琴发布了新的文献求助10
16秒前
2718725836完成签到,获得积分20
16秒前
17秒前
lilac应助文艺水风采纳,获得10
18秒前
华仔应助文艺水风采纳,获得10
18秒前
深空完成签到 ,获得积分10
18秒前
橙子发布了新的文献求助10
20秒前
哼1发布了新的文献求助10
20秒前
chenle_98发布了新的文献求助10
21秒前
四叶曦发布了新的文献求助10
22秒前
一一应助shanhai采纳,获得10
22秒前
22秒前
CodeCraft应助学术纣王采纳,获得10
23秒前
chenle_98完成签到,获得积分10
25秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 800
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
Learning to Listen, Listening to Learn 570
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3871380
求助须知:如何正确求助?哪些是违规求助? 3413446
关于积分的说明 10685095
捐赠科研通 3137960
什么是DOI,文献DOI怎么找? 1731276
邀请新用户注册赠送积分活动 834735
科研通“疑难数据库(出版商)”最低求助积分说明 781310