已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Integrating nonlinear analysis and machine learning for human induced pluripotent stem cell‐based drug cardiotoxicity testing

心脏毒性 机器学习 诱导多能干细胞 人工智能 计算机科学 降维 药品 非线性系统 药理学 医学 化学 毒性 内科学 基因 量子力学 物理 胚胎干细胞 生物化学
作者
Andrew Kowalczewski,Courtney Sakolish,Plansky Hoang,Xiyuan Liu,Sabir Jacquir,Ivan Rusyn,Zhen Ma
出处
期刊:Journal of Tissue Engineering and Regenerative Medicine [Wiley]
卷期号:16 (8): 732-743 被引量:1
标识
DOI:10.1002/term.3325
摘要

Utilizing recent advances in human induced pluripotent stem cell (hiPSC) technology, nonlinear analysis and machine learning we can create novel tools to evaluate drug-induced cardiotoxicity on human cardiomyocytes. With cardiovascular disease remaining the leading cause of death globally it has become imperative to create effective and modern tools to test the efficacy and toxicity of drugs to combat heart disease. The calcium transient signals recorded from hiPSC-derived cardiomyocytes (hiPSC-CMs) are highly complex and dynamic with great degrees of response characteristics to various drug treatments. However, traditional linear methods often fail to capture the subtle variation in these signals generated by hiPSC-CMs. In this work, we integrated nonlinear analysis, dimensionality reduction techniques and machine learning algorithms for better classifying the contractile signals from hiPSC-CMs in response to different drug exposure. By utilizing extracted parameters from a commercially available high-throughput testing platform, we were able to distinguish the groups with drug treatment from baseline controls, determine the drug exposure relative to IC50 values, and classify the drugs by its unique cardiac responses. By incorporating nonlinear parameters computed by phase space reconstruction, we were able to improve our machine learning algorithm's ability to predict cardiotoxic levels and drug classifications. We also visualized the effects of drug treatment and dosages with dimensionality reduction techniques, t-distributed stochastic neighbor embedding (t-SNE). We have shown that integration of nonlinear analysis and artificial intelligence has proven to be a powerful tool for analyzing cardiotoxicity and classifying toxic compounds through their mechanistic action.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
苹果小玉发布了新的文献求助10
刚刚
刚刚
1秒前
EverySoda完成签到 ,获得积分10
3秒前
科研通AI5应助科研白白采纳,获得10
4秒前
xxiix发布了新的文献求助10
4秒前
4秒前
5秒前
czy发布了新的文献求助10
5秒前
ohh完成签到,获得积分10
7秒前
8秒前
左丘绝山发布了新的文献求助10
8秒前
9秒前
9秒前
9秒前
10秒前
10秒前
11秒前
20230321发布了新的文献求助10
11秒前
CipherSage应助奇客采纳,获得10
12秒前
轻松的绿竹完成签到,获得积分10
12秒前
左丘绝山完成签到,获得积分10
14秒前
15秒前
15秒前
任性凤凰发布了新的文献求助10
15秒前
涔雨发布了新的文献求助10
16秒前
AAA发布了新的文献求助10
17秒前
循证小刘发布了新的文献求助10
17秒前
darkpigx发布了新的文献求助10
18秒前
搞学术的Theo完成签到,获得积分20
18秒前
科研通AI2S应助Wang采纳,获得10
22秒前
李健的粉丝团团长应助Wang采纳,获得10
22秒前
充电宝应助Wang采纳,获得10
22秒前
xxiix完成签到,获得积分10
22秒前
23秒前
星辰大海应助任性凤凰采纳,获得10
25秒前
26秒前
Moislad发布了新的文献求助10
26秒前
ding应助AAA采纳,获得30
27秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784654
求助须知:如何正确求助?哪些是违规求助? 3329803
关于积分的说明 10243452
捐赠科研通 3045163
什么是DOI,文献DOI怎么找? 1671592
邀请新用户注册赠送积分活动 800470
科研通“疑难数据库(出版商)”最低求助积分说明 759399