Raman spectroscopy for on-line monitoring of botanical extraction process using convolutional neural network with background subtraction

卷积神经网络 人工智能 计算机科学 预处理器 模式识别(心理学) 偏最小二乘回归 背景减法 萃取(化学) 减法 生物系统 数学 化学 机器学习 色谱法 像素 生物 算术
作者
Chen-Lei Ru,Wu Wen,Yi Zhong
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier BV]
卷期号:284: 121494-121494 被引量:11
标识
DOI:10.1016/j.saa.2022.121494
摘要

Aqueous extraction is the most common and cost-effective means of obtaining active ingredients from medicinal plants. However, botanical extracts generally contain high pigment content and complex chemical composition posing a challenge for the process analysis of aqueous extraction. Here, we employed Raman spectroscopy to monitor the physical and chemical properties during the extraction process using convolution neural network (CNN) with background subtraction. Real-time spectra were first preprocessed to eliminate fluorescence background interference. Next, two types of CNN models, the one-dimensional CNN (1D-CNN) based on one preprocessing method, and two-dimensional CNN (2D-CNN) based on a concatenation of differentially pretreated data blocks, were used to receive the preprocessed spectra data. Two case studies were conducted for 1D- and 2D-CNN: the extraction of Aurantii fructus, and the co-extraction of Radix Salvia miltiorrhiza and Rhizoma Ligusticum chuanxiong. Furthermore, partial least squares (PLS) models and sequential preprocessing through orthogonalization (SPORT) models were developed and compared with 1D-CNN and 2D-CNN, respectively. CNN-based methods were superior to other models in terms of prediction accuracy, with 2D-CNN yielding the best results. These results indicated that preprocessing and CNN methods were highly complementary, and could effectively remove the fluorescence effect and artefacts introduced by pretreatment in spectral profile. To the best of our knowledge, this is the first study to demonstrate that a combination of preprocessing and CNN leads to improved prediction performance of analytes when using Raman spectroscopy for online monitoring high-pigmented samples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cppcppsmida完成签到,获得积分10
1秒前
哈ha完成签到,获得积分10
2秒前
jac1完成签到,获得积分10
3秒前
Rosaline发布了新的文献求助20
3秒前
下午好完成签到 ,获得积分10
4秒前
liu123456完成签到,获得积分10
4秒前
zj完成签到,获得积分10
4秒前
琴楼完成签到,获得积分10
4秒前
慕新完成签到,获得积分10
5秒前
6秒前
熄熄完成签到 ,获得积分10
6秒前
7秒前
梦XING完成签到 ,获得积分10
9秒前
9秒前
微笑的兔子完成签到,获得积分10
9秒前
hhhhmmmn完成签到,获得积分10
10秒前
12秒前
12秒前
小东同志完成签到,获得积分10
13秒前
Victoria完成签到,获得积分10
15秒前
沉默的寻凝完成签到 ,获得积分10
15秒前
建业完成签到,获得积分10
17秒前
18秒前
希雅完成签到 ,获得积分10
19秒前
ET完成签到,获得积分10
19秒前
rainy发布了新的文献求助30
19秒前
jiayueiyang完成签到,获得积分10
23秒前
liu bo完成签到,获得积分10
23秒前
Akim应助机灵的丸子采纳,获得10
23秒前
23秒前
翟淑雨发布了新的文献求助10
24秒前
科研小白完成签到,获得积分10
24秒前
25秒前
英姑应助建业采纳,获得10
27秒前
喜乐发布了新的文献求助30
27秒前
LL完成签到,获得积分10
27秒前
ynlqjqx发布了新的文献求助10
28秒前
温大善人完成签到,获得积分10
31秒前
back you up关注了科研通微信公众号
32秒前
科研通AI5应助zzz采纳,获得30
33秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3671598
求助须知:如何正确求助?哪些是违规求助? 3228309
关于积分的说明 9779385
捐赠科研通 2938622
什么是DOI,文献DOI怎么找? 1610143
邀请新用户注册赠送积分活动 760547
科研通“疑难数据库(出版商)”最低求助积分说明 736093