Raman spectroscopy for on-line monitoring of botanical extraction process using convolutional neural network with background subtraction

卷积神经网络 人工智能 计算机科学 预处理器 模式识别(心理学) 偏最小二乘回归 背景减法 萃取(化学) 减法 生物系统 数学 化学 机器学习 色谱法 像素 生物 算术
作者
Chen-Lei Ru,Wen Wu,Yi Zhong
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier]
卷期号:284: 121494-121494 被引量:8
标识
DOI:10.1016/j.saa.2022.121494
摘要

Aqueous extraction is the most common and cost-effective means of obtaining active ingredients from medicinal plants. However, botanical extracts generally contain high pigment content and complex chemical composition posing a challenge for the process analysis of aqueous extraction. Here, we employed Raman spectroscopy to monitor the physical and chemical properties during the extraction process using convolution neural network (CNN) with background subtraction. Real-time spectra were first preprocessed to eliminate fluorescence background interference. Next, two types of CNN models, the one-dimensional CNN (1D-CNN) based on one preprocessing method, and two-dimensional CNN (2D-CNN) based on a concatenation of differentially pretreated data blocks, were used to receive the preprocessed spectra data. Two case studies were conducted for 1D- and 2D-CNN: the extraction of Aurantii fructus, and the co-extraction of Radix Salvia miltiorrhiza and Rhizoma Ligusticum chuanxiong. Furthermore, partial least squares (PLS) models and sequential preprocessing through orthogonalization (SPORT) models were developed and compared with 1D-CNN and 2D-CNN, respectively. CNN-based methods were superior to other models in terms of prediction accuracy, with 2D-CNN yielding the best results. These results indicated that preprocessing and CNN methods were highly complementary, and could effectively remove the fluorescence effect and artefacts introduced by pretreatment in spectral profile. To the best of our knowledge, this is the first study to demonstrate that a combination of preprocessing and CNN leads to improved prediction performance of analytes when using Raman spectroscopy for online monitoring high-pigmented samples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cxlhzq完成签到,获得积分10
刚刚
踏实的盼秋完成签到,获得积分10
1秒前
yuanling完成签到 ,获得积分10
2秒前
怡然猎豹完成签到,获得积分10
4秒前
5秒前
2012csc完成签到 ,获得积分0
6秒前
bobochi完成签到 ,获得积分10
8秒前
8秒前
知性的水杯完成签到 ,获得积分10
11秒前
cc发布了新的文献求助10
11秒前
V_I_G完成签到,获得积分10
14秒前
15秒前
活泼新儿完成签到 ,获得积分10
21秒前
晓晓完成签到 ,获得积分10
22秒前
komisan完成签到 ,获得积分10
23秒前
23秒前
fish完成签到,获得积分10
24秒前
痴情的从雪完成签到,获得积分10
24秒前
苏鱼完成签到 ,获得积分10
25秒前
研友_8yVV0L完成签到 ,获得积分10
26秒前
26秒前
小时完成签到 ,获得积分10
27秒前
无情悟空完成签到,获得积分10
28秒前
哈哈完成签到,获得积分10
29秒前
infinite完成签到,获得积分10
29秒前
DOGDAD完成签到,获得积分10
29秒前
29秒前
鲁彦华发布了新的文献求助20
32秒前
嗯哼应助Mojito采纳,获得20
32秒前
yqhide完成签到,获得积分10
33秒前
34秒前
机灵的成协完成签到,获得积分10
35秒前
星际舟完成签到,获得积分10
35秒前
兴奋的定帮完成签到,获得积分10
35秒前
酷波er应助阿肯李采纳,获得10
36秒前
38秒前
again完成签到 ,获得积分10
38秒前
yangy115完成签到,获得积分10
38秒前
小桑桑发布了新的文献求助20
40秒前
孤独雨梅完成签到,获得积分10
40秒前
高分求助中
좌파는 어떻게 좌파가 됐나:한국 급진노동운동의 형성과 궤적 2500
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Cognitive linguistics critical concepts in linguistics 800
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
氟盐冷却高温堆非能动余热排出性能及安全分析研究 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3052675
求助须知:如何正确求助?哪些是违规求助? 2709926
关于积分的说明 7418483
捐赠科研通 2354527
什么是DOI,文献DOI怎么找? 1246159
科研通“疑难数据库(出版商)”最低求助积分说明 605951
版权声明 595921