Predicting and explaining severity of road accident using artificial intelligence techniques, SHAP and feature analysis

范围(计算机科学) 人工智能 事故(哲学) 计算机科学 机器学习 法律工程学 工程类 认识论 哲学 程序设计语言
作者
Chakradhara Panda,Alok Kumar Mishra,Aruna Kumar Dash,Hedaytullah Nawab
出处
期刊:International Journal of Crashworthiness [Taylor & Francis]
卷期号:28 (2): 186-201 被引量:20
标识
DOI:10.1080/13588265.2022.2074643
摘要

AbstractAbstractThe accurate prediction of accident severity has become an active area of research in recent years, although studies in certain regions such as South Asia and Sub-Saharan Africa are comparatively less. In this study, we aim to contribute in many ways: (i) we conduct an analytical review of the literature to gauge the interest and scope of existing studies and identify the direction for further research, and (ii) a mixture of old and relatively new artificial intelligence (AI) techniques is applied to road accident data of India (iii) we employ shapley additive explanations (SHAP) for interpretation of AI model predictions, and (iv) an AI-enabled accident management system is proposed. The findings suggest that AI models are capable of predicting the accident severity. Precisely, the gradient boosting machine attains the best test accuracy. Among features, commercial vehicles, excess speed, national highways, and pedestrians' fault are responsible for accidental road killings.Keywords: Accident severity predictionartificial intelligencemachine learningSHAPfeature analysisAI-enabled accident management systemroad safetyJEL Code: R41B23C53 AcknowledgementAuthors are grateful to the anonymous referee for useful comments. The views expressed in this article are personal. Usual disclaimers apply.Disclosure statementNo potential conflict of interest was reported by the authors.Availability of data and materialThe data that support the findings of this study are openly available in the public domain: https://morth.nic.in/transport-research-wing.Code availabilityAvailable on special request to Authors.Additional informationFundingThis research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors. Correction StatementThis article has been republished with minor changes. These changes do not impact the academic content of the article.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
longlonglong完成签到,获得积分10
3秒前
3秒前
4秒前
单薄飞莲完成签到,获得积分10
4秒前
4秒前
Nakjeong完成签到 ,获得积分10
5秒前
丘比特应助一个千年猪妖采纳,获得10
6秒前
eeeee发布了新的文献求助10
6秒前
Hello应助哈哈哈哈采纳,获得10
6秒前
7秒前
hiipaige发布了新的文献求助30
7秒前
9秒前
10秒前
牛老大发布了新的文献求助10
10秒前
跳跃毒娘发布了新的文献求助10
11秒前
12秒前
12秒前
14秒前
17秒前
南风发布了新的文献求助10
17秒前
催催催发布了新的文献求助10
18秒前
小可爱发布了新的文献求助10
18秒前
20秒前
我是老大应助小丸子采纳,获得10
20秒前
21秒前
在水一方应助刘叶采纳,获得10
21秒前
斯文败类应助hiipaige采纳,获得10
23秒前
23秒前
哈哈哈哈发布了新的文献求助10
24秒前
12458发布了新的文献求助10
25秒前
希望天下0贩的0应助xsc采纳,获得10
25秒前
催催催完成签到,获得积分10
26秒前
jin发布了新的文献求助10
28秒前
南风完成签到,获得积分10
28秒前
29秒前
29秒前
to高坚果发布了新的文献求助10
29秒前
31秒前
科研通AI5应助碎冰蓝采纳,获得10
32秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3802431
求助须知:如何正确求助?哪些是违规求助? 3348058
关于积分的说明 10336202
捐赠科研通 3063960
什么是DOI,文献DOI怎么找? 1682338
邀请新用户注册赠送积分活动 808052
科研通“疑难数据库(出版商)”最低求助积分说明 763997