A Simulation Optimization Approach for the Appointment Scheduling Problem with Decision-Dependent Uncertainties

数学优化 计算机科学 稳健优化 最优化问题 随机优化 估计员 调度(生产过程) 随机变量 决策问题 概率分布 随机规划 数学 算法 统计
作者
Tito Homem‐de‐Mello,Qingxia Kong,Rodrigo Godoy-Barba
出处
期刊:Informs Journal on Computing 卷期号:34 (5): 2845-2865 被引量:6
标识
DOI:10.1287/ijoc.2022.1212
摘要

The appointment scheduling problem (ASP) studies how to manage patient arrivals to a healthcare system to improve system performance. An important challenge occurs when some patients may not show up for an appointment. Although the ASP is well studied in the literature, the vast majority of the existing work does not consider the well-observed phenomenon that patient no-show is influenced by the appointment time, the usual decision variable in the ASP. This paper studies the ASP with random service time (exogenous uncertainty) with known distribution and patient decision-dependent no-show behavior (endogenous uncertainty). This problem belongs to the class of stochastic optimization with decision-dependent uncertainties. Such problems are notoriously difficult as they are typically nonconvex. We propose a stochastic projected gradient path (SPGP) method to solve the problem, which requires the development of a gradient estimator of the objective function—a nontrivial task, as the literature on gradient-based optimization algorithms for problems with decision-dependent uncertainty is very scarce and unsuitable for our model. Our method can solve the ASP problem under arbitrarily smooth show-up probability functions. We present solutions under different patterns of no-show behavior and demonstrate that breaking the assumption of constant show-up probability substantially changes the scheduling solutions. We conduct numerical experiments in a variety of settings to compare our results with those obtained with a distributionally robust optimization method developed in the literature. The cost reduction obtained with our method, which we call the value of distribution information, can be interpreted as how much the system performance can be improved by knowing the distribution of the service times, compared to not knowing it. We observe that the value of distribution information is up to 31% of the baseline cost, and that such value is higher when the system is crowded or/and the waiting time cost is relatively high. Summary of Contribution: This paper studies an appointment scheduling problem under time-dependent patient no-show behavior, a situation commonly observed in practice. The problem belongs to the class of stochastic optimization problems with decision-dependent uncertainties in the operations research literature. Such problems are notoriously difficult to solve as a result of the lack of convexity, and the present case requires different techniques because of the presence of continuous distributions for the service times. A stochastic projected gradient path method, which includes the development of specialized techniques to estimate the gradient of the objective function, is proposed to solve the problem. For problems with a similar structure, the algorithm can be applied once the gradient estimator of the objective function is obtained. Extensive numerical studies are presented to demonstrate the quality of the solutions, the importance of modeling time-dependent no-shows in appointment scheduling, and the value of using distribution information about the service times.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
Catherine发布了新的文献求助10
3秒前
dwd完成签到,获得积分10
3秒前
小趴菜完成签到,获得积分10
4秒前
4秒前
不忘初心发布了新的文献求助10
4秒前
5秒前
6秒前
猫先生发布了新的文献求助10
7秒前
nlm发布了新的文献求助10
8秒前
苏打发布了新的文献求助20
9秒前
zzz发布了新的文献求助10
9秒前
Catherine完成签到,获得积分10
9秒前
10秒前
深海鳕鱼子完成签到,获得积分10
11秒前
yzm发布了新的文献求助10
11秒前
12秒前
orixero应助江南采纳,获得10
12秒前
不忘初心完成签到,获得积分10
12秒前
yqm发布了新的文献求助10
13秒前
14秒前
吴子冰发布了新的文献求助10
15秒前
科研通AI5应助大兵采纳,获得10
15秒前
17秒前
高贵白竹发布了新的文献求助10
17秒前
18秒前
无骨鸡爪不长胖应助yzm采纳,获得10
19秒前
20秒前
咖咖KAKA完成签到,获得积分10
21秒前
上官若男应助zzz采纳,获得10
22秒前
高贵白竹完成签到,获得积分20
22秒前
edsenone发布了新的文献求助10
23秒前
24秒前
ding应助吴子冰采纳,获得10
25秒前
小蘑菇应助吴子冰采纳,获得10
25秒前
25秒前
量子星尘发布了新的文献求助10
26秒前
zhangqq完成签到,获得积分10
26秒前
28秒前
29秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Parametric Random Vibration 800
Building Quantum Computers 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3864635
求助须知:如何正确求助?哪些是违规求助? 3407023
关于积分的说明 10652456
捐赠科研通 3131028
什么是DOI,文献DOI怎么找? 1726757
邀请新用户注册赠送积分活动 831983
科研通“疑难数据库(出版商)”最低求助积分说明 780078