Evaluation of a deep-learning model for multispectral remote sensing of land use and crop classification

特征(语言学) 人工智能 计算机科学 模式识别(心理学) 遥感 随机森林 特征选择 多光谱图像 采样(信号处理) 混淆矩阵 学习迁移 一般化 骨干网 统计 数学 计算机视觉 地质学 数学分析 计算机网络 哲学 滤波器(信号处理) 语言学
作者
Lijun Wang,Jiayao Wang,Zhenzhen Liu,Jun Zhu,Fen Qin
出处
期刊:Crop Journal [KeAi]
卷期号:10 (5): 1435-1451 被引量:72
标识
DOI:10.1016/j.cj.2022.01.009
摘要

High-resolution deep-learning-based remote-sensing imagery analysis has been widely used in land-use and crop-classification mapping. However, the influence of composite feature bands, including complex feature indices arising from different sensors on the backbone, patch size, and predictions in transferable deep models require further testing. The experiments were conducted in six sites in Henan province from 2019 to 2021. This study sought to enable the transfer of classification models across regions and years for Sentinel-2A (10-m resolution) and Gaofen PMS (2-m resolution) imagery. With feature selection and up-sampling of small samples, the performance of UNet++ architecture on five backbones and four patch sizes was examined. Joint loss, mean Intersection over Union (mIoU), and epoch time were analyzed, and the optimal backbone and patch size for both sensors were Timm-RegNetY-320 and 256 × 256, respectively. The overall accuracy and F1 scores of the Sentinel-2A predictions ranged from 96.86% to 97.72% and 71.29% to 80.75%, respectively, compared to 75.34%–97.72% and 54.89%–73.25% for the Gaofen predictions. The accuracies of each site indicated that patch size exerted a greater influence on model performance than the backbone. The feature-selection-based predictions with UNet++ architecture and up-sampling of minor classes demonstrated the capabilities of deep-learning generalization for classifying complex ground objects, offering improved performance compared to the UNet, Deeplab V3+, Random Forest, and Object-Oriented Classification models. In addition to the overall accuracy, confusion matrices, precision, recall, and F1 scores should be evaluated for minor land-cover types. This study contributes to large-scale, dynamic, and near-real-time land-use and crop mapping by integrating deep learning and multi-source remote-sensing imagery
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
量子星尘发布了新的文献求助10
1秒前
CXS完成签到,获得积分10
1秒前
1秒前
1秒前
好运加满完成签到 ,获得积分10
1秒前
默鱼完成签到,获得积分10
2秒前
饶天源发布了新的文献求助10
3秒前
4秒前
失眠的灵寒完成签到,获得积分10
5秒前
YuchaoJia发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
6秒前
悲凉的初翠完成签到,获得积分10
6秒前
6秒前
苏木完成签到,获得积分10
6秒前
7秒前
唐很甜完成签到 ,获得积分10
9秒前
宝宝鼠发布了新的文献求助10
9秒前
10秒前
漫漫发布了新的文献求助10
10秒前
郭菱香发布了新的文献求助10
11秒前
rAbit发布了新的文献求助10
11秒前
11秒前
12秒前
秋夏山完成签到,获得积分10
12秒前
Brave完成签到,获得积分10
13秒前
大模型应助科研通管家采纳,获得10
13秒前
唐泽雪穗应助科研通管家采纳,获得10
13秒前
无花果应助科研通管家采纳,获得10
13秒前
大个应助科研通管家采纳,获得10
13秒前
上官若男应助科研通管家采纳,获得10
13秒前
SciGPT应助科研通管家采纳,获得10
14秒前
Orange应助科研通管家采纳,获得10
14秒前
田様应助科研通管家采纳,获得10
14秒前
14秒前
深情安青应助科研通管家采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
当代中国马克思主义问题意识研究 科学出版社 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4979386
求助须知:如何正确求助?哪些是违规求助? 4232080
关于积分的说明 13182198
捐赠科研通 4023012
什么是DOI,文献DOI怎么找? 2201141
邀请新用户注册赠送积分活动 1213588
关于科研通互助平台的介绍 1129781