TCM herbal prescription recommendation model based on multi-graph convolutional network

药方 计算机科学 人工智能 医学 图形 中医药 传统医学 数据挖掘 替代医学 理论计算机科学 药理学 病理
作者
Wen Zhao,Weikai Lu,Zuoyong Li,Changèn Zhou,Haoyi Fan,Zhaoyang Yang,Xuejuan Lin,Candong Li
出处
期刊:Journal of Ethnopharmacology [Elsevier BV]
卷期号:297: 115109-115109 被引量:56
标识
DOI:10.1016/j.jep.2022.115109
摘要

The recommendation of herbal prescriptions is a focus of research in traditional Chinese medicine (TCM). Artificial intelligence (AI) algorithms can generate prescriptions by analysing symptom data. Current models mainly focus on the binary relationships between a group of symptoms and a group of TCM herbs. A smaller number of existing models focus on the ternary relationships between TCM symptoms, syndrome-types and herbs. However, the process of TCM diagnosis (symptom analysis) and treatment (prescription) is, in essence, a "multi-ary" (n-ary) relationship. Present models fall short of considering the n-ary relationships between symptoms, state-elements, syndrome-types and herbs. Therefore, there is room for improvement in TCM herbal prescription recommendation models.To portray the n-ary relationship, this study proposes a prescription recommendation model based on a multigraph convolutional network (MGCN). It introduces two essential components of the TCM diagnosis process: state-elements and syndrome-types.The MGCN consists of two modules: a TCM feature-aggregation module and a herbal medicine prediction module. The TCM feature-aggregation module simulates the n-ary relationships between symptoms and prescriptions by constructing a symptom-'state element'-symptom graph (Se) and a symptom-'syndrome-type'-symptom graph (Ts). The herbal medicine prediction module inputs state-elements, syndrome-types and symptom data and uses a multilayer perceptron (MLP) to predict a corresponding herbal prescription. To verify the effectiveness of the proposed model, numerous quantitative and qualitative experiments were conducted on the Treatise on Febrile Diseases dataset.In the experiments, the MGCN outperformed three other algorithms used for comparison. In addition, the experimental data shows that, of these three algorithms, the SVM performed best. The MGCN was 4.51%, 6.45% and 5.31% higher in Precision@5, Recall@5 and F1-score@5, respectively, than the SVM. We set the K-value to 5 and conducted two qualitative experiments. In the first case, all five herbs in the label were correctly predicted by the MGCN. In the second case, four of the five herbs were correctly predicted.Compared with existing AI algorithms, the MGCN significantly improved the accuracy of TCM herbal prescription recommendations. In addition, the MGCN provides a more accurate TCM prescription herbal recommendation scheme, giving it great practical application value.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
山猫完成签到,获得积分10
刚刚
1秒前
摸鱼主编magazine完成签到,获得积分10
1秒前
Liooo完成签到 ,获得积分10
3秒前
linxiangFYYY发布了新的文献求助10
3秒前
yyy发布了新的文献求助10
4秒前
4秒前
空白发布了新的文献求助10
5秒前
5秒前
Avie完成签到 ,获得积分10
5秒前
宝宝发布了新的文献求助10
6秒前
xiaotaiyang完成签到,获得积分10
6秒前
王金禹发布了新的文献求助10
7秒前
7秒前
动听的谷秋完成签到 ,获得积分10
7秒前
agnes发布了新的文献求助10
7秒前
北风发布了新的文献求助10
8秒前
追寻夜香完成签到 ,获得积分10
8秒前
yyy完成签到,获得积分10
9秒前
9秒前
顺心凡之完成签到,获得积分10
9秒前
Hello应助00爱学习采纳,获得10
9秒前
思源应助hzauhzau采纳,获得10
10秒前
gaomingquan发布了新的文献求助10
10秒前
XQQDD发布了新的文献求助10
10秒前
11秒前
11秒前
wyj完成签到,获得积分20
11秒前
酷波er应助空白采纳,获得10
11秒前
张馨戈完成签到 ,获得积分10
12秒前
Meyako应助狂暴的蜗牛0713采纳,获得10
12秒前
111发布了新的文献求助10
13秒前
qianqian_wang完成签到,获得积分10
13秒前
甜蜜晓绿发布了新的文献求助10
14秒前
哭泣秋蝶发布了新的文献求助10
14秒前
15秒前
15秒前
mwiyi发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
줄기세포 생물학 1000
Quantum reference frames : from quantum information to spacetime 888
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4474698
求助须知:如何正确求助?哪些是违规求助? 3933372
关于积分的说明 12203591
捐赠科研通 3587878
什么是DOI,文献DOI怎么找? 1972534
邀请新用户注册赠送积分活动 1010264
科研通“疑难数据库(出版商)”最低求助积分说明 903868