TCM herbal prescription recommendation model based on multi-graph convolutional network

药方 计算机科学 人工智能 医学 图形 中医药 传统医学 数据挖掘 替代医学 理论计算机科学 药理学 病理
作者
Wen Zhao,Weikai Lu,Zuoyong Li,Changèn Zhou,Haoyi Fan,Zhaoyang Yang,Xuejuan Lin,Candong Li
出处
期刊:Journal of Ethnopharmacology [Elsevier BV]
卷期号:297: 115109-115109 被引量:52
标识
DOI:10.1016/j.jep.2022.115109
摘要

The recommendation of herbal prescriptions is a focus of research in traditional Chinese medicine (TCM). Artificial intelligence (AI) algorithms can generate prescriptions by analysing symptom data. Current models mainly focus on the binary relationships between a group of symptoms and a group of TCM herbs. A smaller number of existing models focus on the ternary relationships between TCM symptoms, syndrome-types and herbs. However, the process of TCM diagnosis (symptom analysis) and treatment (prescription) is, in essence, a "multi-ary" (n-ary) relationship. Present models fall short of considering the n-ary relationships between symptoms, state-elements, syndrome-types and herbs. Therefore, there is room for improvement in TCM herbal prescription recommendation models.To portray the n-ary relationship, this study proposes a prescription recommendation model based on a multigraph convolutional network (MGCN). It introduces two essential components of the TCM diagnosis process: state-elements and syndrome-types.The MGCN consists of two modules: a TCM feature-aggregation module and a herbal medicine prediction module. The TCM feature-aggregation module simulates the n-ary relationships between symptoms and prescriptions by constructing a symptom-'state element'-symptom graph (Se) and a symptom-'syndrome-type'-symptom graph (Ts). The herbal medicine prediction module inputs state-elements, syndrome-types and symptom data and uses a multilayer perceptron (MLP) to predict a corresponding herbal prescription. To verify the effectiveness of the proposed model, numerous quantitative and qualitative experiments were conducted on the Treatise on Febrile Diseases dataset.In the experiments, the MGCN outperformed three other algorithms used for comparison. In addition, the experimental data shows that, of these three algorithms, the SVM performed best. The MGCN was 4.51%, 6.45% and 5.31% higher in Precision@5, Recall@5 and F1-score@5, respectively, than the SVM. We set the K-value to 5 and conducted two qualitative experiments. In the first case, all five herbs in the label were correctly predicted by the MGCN. In the second case, four of the five herbs were correctly predicted.Compared with existing AI algorithms, the MGCN significantly improved the accuracy of TCM herbal prescription recommendations. In addition, the MGCN provides a more accurate TCM prescription herbal recommendation scheme, giving it great practical application value.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
20秒前
科研通AI5应助欣心采纳,获得10
21秒前
SYLH应助朴素的紫安采纳,获得10
24秒前
可靠尔岚发布了新的文献求助10
31秒前
扫地888完成签到 ,获得积分10
36秒前
DrLuffy完成签到 ,获得积分10
51秒前
朴素的紫安完成签到 ,获得积分10
52秒前
刘辰完成签到 ,获得积分10
53秒前
55秒前
55秒前
Serein完成签到,获得积分10
57秒前
顺顺发布了新的文献求助10
59秒前
Skywings完成签到,获得积分10
1分钟前
先锋老刘001完成签到,获得积分10
1分钟前
榆木小鸟完成签到 ,获得积分10
1分钟前
肯德鸭完成签到,获得积分10
1分钟前
wintersss完成签到,获得积分10
1分钟前
笨笨忘幽完成签到,获得积分10
1分钟前
飞云完成签到 ,获得积分10
1分钟前
WRZ完成签到 ,获得积分10
1分钟前
最棒哒完成签到 ,获得积分10
1分钟前
大气的乌冬面完成签到,获得积分10
1分钟前
1分钟前
1分钟前
Casey完成签到 ,获得积分10
1分钟前
童白翠发布了新的文献求助10
1分钟前
路路完成签到 ,获得积分10
1分钟前
cmq完成签到 ,获得积分10
1分钟前
CLTTT完成签到,获得积分10
1分钟前
彭于晏应助动听的千萍采纳,获得10
2分钟前
落寞思山关注了科研通微信公众号
2分钟前
搜集达人应助多边棱采纳,获得10
2分钟前
饱满的棒棒糖完成签到 ,获得积分10
2分钟前
不秃燃的小老弟完成签到 ,获得积分10
2分钟前
橘子海完成签到 ,获得积分10
2分钟前
tion66完成签到 ,获得积分10
2分钟前
传奇3应助童白翠采纳,获得10
2分钟前
CNAxiaozhu7完成签到,获得积分10
2分钟前
cdercder应助科研通管家采纳,获得20
2分钟前
xu完成签到 ,获得积分10
3分钟前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798521
求助须知:如何正确求助?哪些是违规求助? 3344082
关于积分的说明 10318430
捐赠科研通 3060628
什么是DOI,文献DOI怎么找? 1679732
邀请新用户注册赠送积分活动 806761
科研通“疑难数据库(出版商)”最低求助积分说明 763353