已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

VTON-SCFA: A Virtual Try-On Network Based on the Semantic Constraints and Flow Alignment

计算机科学 图像扭曲 人工智能 钥匙(锁) 水准点(测量) 语义学(计算机科学) 服装 计算机视觉 情报检索 大地测量学 计算机安全 历史 考古 程序设计语言 地理
作者
Chenghu Du,Feng Yu,Minghua Jiang,Ailing Hua,Wei Xiong,Tao Peng,Xinrong Hu
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:25: 777-791 被引量:30
标识
DOI:10.1109/tmm.2022.3152367
摘要

An image-based virtual try-on system transfers an in-shop garment to the corresponding garment region of a reference person, which has huge application potential and commercial value in online clothing shopping. Existing methods have difficulty preserving garment texture and body details because of rough garment alignment and imperfect detail-retention strategies. To address this problem, we propose a virtual try-on network based on semantic constraints and flow alignment. The key idea of the framework is as follows: 1) a global-local semantic predictor (GLSP) is proposed to generate a reasonable target semantic map, which clearly guides the correct alignment of the in-shop garment with the body and the generation of try-on result; and 2) a novel appearance flow-based garment alignment network (AFGAN) is proposed to align the in-shop garment with the body, which is important to preserve maximum garment detail and ensure natural and realistic warping; and 3) we propose a synthesis strategy to integrate the aligned garment and the human body to preserve maximum body detail for generating a realistic result and preventing cross-occlusion and pixel confusion between different body parts. Experiments on the existing benchmark dataset demonstrate that the proposed method achieves the best performance on qualitative and quantitative experiments among the state-of-the-art virtual try-on techniques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大白小杨完成签到 ,获得积分10
1秒前
2秒前
大模型应助beiyuan采纳,获得10
5秒前
完美世界应助子凯采纳,获得10
8秒前
闪闪的又亦完成签到 ,获得积分10
9秒前
gwt发布了新的文献求助10
9秒前
9秒前
10秒前
11秒前
13秒前
碧蓝皮卡丘完成签到,获得积分10
13秒前
daodao发布了新的文献求助10
14秒前
伶俐断天发布了新的文献求助10
15秒前
南雨完成签到 ,获得积分10
15秒前
xx完成签到 ,获得积分10
16秒前
16秒前
17秒前
17秒前
Hello应助科研通管家采纳,获得10
17秒前
科研通AI5应助科研通管家采纳,获得10
18秒前
NN应助科研通管家采纳,获得10
18秒前
ding应助科研通管家采纳,获得10
18秒前
猪猪hero应助科研通管家采纳,获得10
18秒前
Ava应助科研通管家采纳,获得10
18秒前
Jasper应助科研通管家采纳,获得10
18秒前
NN应助科研通管家采纳,获得10
18秒前
猪猪hero应助科研通管家采纳,获得10
18秒前
SciGPT应助科研通管家采纳,获得10
18秒前
猪猪hero应助科研通管家采纳,获得10
18秒前
NN应助科研通管家采纳,获得10
18秒前
NN应助科研通管家采纳,获得10
18秒前
18秒前
19秒前
Akim应助晟sheng采纳,获得10
20秒前
飘逸绿海完成签到 ,获得积分10
21秒前
21秒前
Spring完成签到,获得积分10
22秒前
稳重以冬发布了新的文献求助10
23秒前
子凯发布了新的文献求助10
23秒前
lll完成签到,获得积分10
25秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Minimum Bar Spacing as a Function of Bond and Shear Strength 200
Anti-Politics Machine: Development, Depoliticization, and Bureaucratic Power in Lesotho James Ferguson 200
A monograph of the genera Conocybe and Pholiotina in Europe 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3837158
求助须知:如何正确求助?哪些是违规求助? 3379387
关于积分的说明 10508924
捐赠科研通 3099088
什么是DOI,文献DOI怎么找? 1706862
邀请新用户注册赠送积分活动 821288
科研通“疑难数据库(出版商)”最低求助积分说明 772499