计算机科学
RGB颜色模型
保险丝(电气)
人工智能
模态(人机交互)
水准点(测量)
模式
频道(广播)
领域(数学)
模式识别(心理学)
对象(语法)
频域
过程(计算)
计算机视觉
数学
社会科学
大地测量学
社会学
地理
纯数学
电气工程
工程类
操作系统
计算机网络
作者
Xiao Jin,Chunle Guo,Zhen He,Jing Xu,Yongwei Wang,Yuting Su
出处
期刊:Neurocomputing
[Elsevier BV]
日期:2022-04-05
卷期号:491: 414-425
被引量:23
标识
DOI:10.1016/j.neucom.2022.04.015
摘要
RGB-D saliency detection aims to comprehensively use RGB images and depth maps to detect object saliency. This field still faces two challenges: 1) how to extract representative multimodal features and 2) how to effectively fuse them. Most of the previous methods in this field equally treat RGB and depth information as two modalities, while not considering the difference in the frequency domain of the two modalities, and may lose some complementary information. In this paper, we introduce the frequency channel attention mechanism into the fusion process. First, we design a frequency-aware cross-modality attention (FACMA) module to interweave adequate channel features and select representative features. In the FACMA module, we also propose a spatial frequency channel attention (SFCA) module to introduce more complementary information in different channels. Second, we develop a weighted cross-modality fusion (WCMF) module to adaptively fuse multimodality features by learning the content-dependent weight maps. Comprehensive experiments on several benchmark datasets demonstrate that the proposed framework outperforms seventeen state-of-the-art methods.
科研通智能强力驱动
Strongly Powered by AbleSci AI