亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Representing Graphs via Gromov-Wasserstein Factorization

数学 模分解 理论计算机科学 电压图 折线图 图形 计算机科学 算法 路宽
作者
Hongteng Xu,Jiachang Liu,Dixin Luo,Lawrence Carin
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:45 (1): 999-1016 被引量:8
标识
DOI:10.1109/tpami.2022.3153126
摘要

Graph representation is a challenging and significant problem for many real-world applications. In this work, we propose a novel paradigm called "Gromov-Wasserstein Factorization" (GWF) to learn graph representations in a flexible and interpretable way. Given a set of graphs, whose correspondence between nodes is unknown and whose sizes can be different, our GWF model reconstructs each graph by a weighted combination of some "graph factors" under a pseudo-metric called Gromov-Wasserstein (GW) discrepancy. This model leads to a new nonlinear factorization mechanism of the graphs. The graph factors are shared by all the graphs, which represent the typical patterns of the graphs' structures. The weights associated with each graph indicate the graph factors' contributions to the graph's reconstruction, which lead to a permutation-invariant graph representation. We learn the graph factors of the GWF model and the weights of the graphs jointly by minimizing the overall reconstruction error. When learning the model, we reparametrize the graph factors and the weights to unconstrained model parameters and simplify the backpropagation of gradient with the help of the envelope theorem. For the GW discrepancy (the critical training step), we consider two algorithms to compute it, which correspond to the proximal point algorithm (PPA) and Bregman alternating direction method of multipliers (BADMM), respectively. Furthermore, we propose some extensions of the GWF model, including (i) combining with a graph neural network and learning graph representations in an auto-encoding manner, (ii) representing the graphs with node attributes, and (iii) working as a regularizer for semi-supervised graph classification. Experiments on various datasets demonstrate that our GWF model is comparable to the state-of-the-art methods. The graph representations derived by it perform well in graph clustering and classification tasks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
AMENG完成签到,获得积分10
3秒前
1分钟前
ZY发布了新的文献求助10
1分钟前
冷静的棒棒糖完成签到 ,获得积分10
1分钟前
研友_闾丘枫完成签到,获得积分10
1分钟前
孟严青完成签到,获得积分10
2分钟前
完美世界应助科研通管家采纳,获得10
2分钟前
Orange应助科研通管家采纳,获得10
2分钟前
今后应助lourahan采纳,获得10
3分钟前
4分钟前
sandwich发布了新的文献求助10
4分钟前
sandwich完成签到,获得积分10
4分钟前
4分钟前
小言发布了新的文献求助10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
科研通AI5应助科研通管家采纳,获得10
4分钟前
迷茫的一代完成签到,获得积分10
5分钟前
5分钟前
Wei发布了新的文献求助10
5分钟前
5分钟前
lourahan发布了新的文献求助10
5分钟前
zhanghuan完成签到 ,获得积分10
5分钟前
完美世界应助WATeam采纳,获得10
6分钟前
6分钟前
Jack80发布了新的文献求助10
8分钟前
77完成签到,获得积分10
9分钟前
77发布了新的文献求助20
9分钟前
Zakariaje完成签到,获得积分10
9分钟前
乐乐应助NYW采纳,获得10
9分钟前
SciGPT应助科研通管家采纳,获得10
10分钟前
11分钟前
WATeam发布了新的文献求助10
11分钟前
11分钟前
wanci应助石愚志采纳,获得10
11分钟前
12分钟前
12分钟前
12分钟前
sleet发布了新的文献求助10
12分钟前
Hello应助Agnes采纳,获得10
12分钟前
sleet完成签到,获得积分10
12分钟前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3815818
求助须知:如何正确求助?哪些是违规求助? 3359386
关于积分的说明 10402252
捐赠科研通 3077196
什么是DOI,文献DOI怎么找? 1690236
邀请新用户注册赠送积分活动 813659
科研通“疑难数据库(出版商)”最低求助积分说明 767728