Artificial Intelligence Approach in Gasification Integrated Solid Oxide Fuel Cell Cycle

工艺工程 固体氧化物燃料电池 木材气体发生器 发电 生物量(生态学) 化学能 环境科学 计算机科学 废物管理 工程类 功率(物理) 化学 电气工程 热力学 阳极 海洋学 物理 地质学 物理化学 有机化学 电极
作者
Senem Sezer,Furkan Kartal,Uğur Özveren
出处
期刊:Fuel [Elsevier BV]
卷期号:311: 122591-122591 被引量:26
标识
DOI:10.1016/j.fuel.2021.122591
摘要

With the growing world population and industrial developments, the supply of energy from an economically feasible and widely available source is important. Biomass gasification is a promising technology that produces lower emissions and allows efficient conversion. The gas obtained from the gasification process, especially in steam gasification, consists of a considerable amount of H2 and is used in fuel cells, especially solid oxide fuel cells (SOFC), to generate electricity. SOFC can convert the chemical energy into electricity and is considered as the most suitable fuel cell type for biomass gasification derived fuels. There are numerous research studies on integrated gasification-SOFC systems in the literature. However, these systems are still under development and studies are being conducted on the appropriate design parameters and operating conditions to achieve high energy efficiency. Modeling of the integrated gasification and SOFC system using the thermodynamic method is the simplest way to determine the process behavior. Nowadays, artificial neural networks (ANN) are one of the most popular modeling methods to represent the thermodynamic based gasification and SOFC systems. In this study, an integrated bubbling fluidized bed gasifier and SOFC model was created to generate data for training the ANN models with Aspen Plus simulation. The ANN models predicted the performance parameters in terms of electrical efficiency, net voltage and current density successfully using the varying operating conditions and 30 different biomass types as input parameters. The results showed that the developed ANN models estimated the output parameters with high accuracy by means of R2 greater than 0.999, MAPE < 0.053 and RMSE < 0.751 for training test and validation data sets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小斌发布了新的文献求助10
刚刚
1秒前
1秒前
2秒前
研究牛牛发布了新的文献求助10
2秒前
汉堡包应助慕课魔芋采纳,获得10
2秒前
领导范儿应助慕容松采纳,获得10
3秒前
高挑的冰露完成签到 ,获得积分10
3秒前
重要灵寒发布了新的文献求助10
3秒前
YamDaamCaa应助8888采纳,获得30
4秒前
小蘑菇应助wang采纳,获得10
4秒前
可爱的日记本完成签到 ,获得积分10
4秒前
wuyan204发布了新的文献求助10
4秒前
rwanq发布了新的文献求助10
5秒前
Sea_U应助www采纳,获得10
5秒前
妖孽的二狗完成签到 ,获得积分10
5秒前
是小小李哇完成签到 ,获得积分10
6秒前
期刊完成签到,获得积分0
7秒前
Surface完成签到 ,获得积分10
7秒前
Whisky发布了新的文献求助10
8秒前
Lx_B完成签到,获得积分10
8秒前
9秒前
NexusExplorer应助重要灵寒采纳,获得10
9秒前
9秒前
英姑应助积极的绫采纳,获得10
9秒前
共享精神应助小斌采纳,获得10
9秒前
乔巴发布了新的文献求助10
11秒前
文文完成签到,获得积分10
11秒前
李健应助争渡采纳,获得10
11秒前
鲜艳的访风完成签到,获得积分10
12秒前
13秒前
梧桐完成签到,获得积分10
14秒前
xiaoyao发布了新的文献求助10
14秒前
怕黑的乐蓉完成签到 ,获得积分10
14秒前
yang完成签到 ,获得积分10
15秒前
上官断缘完成签到,获得积分10
15秒前
lisiying完成签到,获得积分20
16秒前
李爱国应助嘻嘻采纳,获得10
16秒前
00完成签到,获得积分10
16秒前
所所应助shimmer采纳,获得10
17秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 530
Apiaceae Himalayenses. 2 500
Beyond The Sentence: Discourse And Sentential Form 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Overcoming Synthetic Challenges in Medicinal Chemistry Mechanistic Insights and Solutions 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4076150
求助须知:如何正确求助?哪些是违规求助? 3615169
关于积分的说明 11474715
捐赠科研通 3333050
什么是DOI,文献DOI怎么找? 1832019
邀请新用户注册赠送积分活动 901817
科研通“疑难数据库(出版商)”最低求助积分说明 820528