计算机科学
自编码
人工智能
特征提取
模式识别(心理学)
提取器
感知器
编码器
方案(数学)
编码(社会科学)
水下
解码方法
语音识别
特征(语言学)
人工神经网络
算法
工程类
数学
统计
哲学
数学分析
地质学
操作系统
海洋学
语言学
工艺工程
作者
Xiaoyu Zhu,Hefeng Dong,Pierluigi Salvo Rossi,Martin Landrø
出处
期刊:IEEE Sensors
日期:2021-10-31
卷期号:: 1-4
被引量:5
标识
DOI:10.1109/sensors47087.2021.9639566
摘要
This work introduces a two-step self-supervised learning scheme, namely contrastive predictive coding (CPC), for underwater source localization. In the first step, a CPC-based self-supervised feature extractor is trained with the acoustic signals. In the second step, the encoder with frozen parameters is taken from the trained feature extractor and connected with a multi-layer perceptron (MLP) trained for source localization on a small labeled dataset. This approach is evaluated on a public dataset, SWellEx-96 Event S5, against an autoencoder (AE) scheme and a purely supervised scheme. The results indicate that the CPC scheme has the best performance and can extract the slow-changing features related to the source.
科研通智能强力驱动
Strongly Powered by AbleSci AI