亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Classification of Muscle Fatigue in Dynamic Contraction Using Surface Electromyography Signals and Multifractal Singularity Spectral Analysis

多重分形系统 肌电图 模式识别(心理学) 肌肉疲劳 人工智能 特征提取 计算机科学 特征选择 小波 数学 分形 医学 物理医学与康复 数学分析
作者
Kiran Marri,Ramakrishnan Swaminathan
出处
期刊:Journal of Dynamic Systems Measurement and Control-transactions of The Asme [ASME International]
卷期号:138 (11) 被引量:21
标识
DOI:10.1115/1.4033832
摘要

Muscle fatigue is a neuromuscular condition experienced during daily activities. This phenomenon is generally characterized using surface electromyography (sEMG) signals and has gained a lot of interest in the fields of clinical rehabilitation, prosthetics control, and sports medicine. sEMG signals are complex, nonstationary and also exhibit self-similarity fractal characteristics. In this work, an attempt has been made to differentiate sEMG signals in nonfatigue and fatigue conditions during dynamic contraction using multifractal analysis. sEMG signals are recorded from biceps brachii muscles of 42 healthy adult volunteers while performing curl exercise. The signals are preprocessed and segmented into nonfatigue and fatigue conditions using the first and last curls, respectively. The multifractal detrended moving average algorithm (MFDMA) is applied to both segments, and multifractal singularity spectrum (SSM) function is derived. Five conventional features are extracted from the singularity spectrum. Twenty-five new features are proposed for analyzing muscle fatigue from the multifractal spectrum. These proposed features are adopted from analysis of sEMG signals and muscle fatigue studies performed in time and frequency domain. These proposed 25 feature sets are compared with conventional five features using feature selection methods such as Wilcoxon rank sum, information gain (IG) and genetic algorithm (GA) techniques. Two classification algorithms, namely, k-nearest neighbor (k-NN) and logistic regression (LR), are explored for differentiating muscle fatigue. The results show that about 60% of the proposed features are statistically highly significant and suitable for muscle fatigue analysis. The results also show that eight proposed features ranked among the top 10 features. The classification accuracy with conventional features in dynamic contraction is 75%. This accuracy improved to 88% with k-NN-GA combination with proposed new feature set. Based on the results, it appears that the multifractal spectrum analysis with new singularity features can be used for clinical evaluation in varied neuromuscular conditions, and the proposed features can also be useful in analyzing other physiological time series.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
妩媚的幼丝完成签到,获得积分20
1秒前
山山完成签到 ,获得积分10
8秒前
19秒前
31秒前
平常以云完成签到 ,获得积分10
44秒前
浮游应助科研通管家采纳,获得10
47秒前
浮游应助科研通管家采纳,获得10
47秒前
浮游应助科研通管家采纳,获得10
47秒前
热情依白完成签到,获得积分10
59秒前
热情依白发布了新的文献求助10
1分钟前
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
ZH的天方夜谭完成签到,获得积分10
3分钟前
3分钟前
badabadaba完成签到,获得积分10
3分钟前
3分钟前
小宋同学不能怂完成签到 ,获得积分10
3分钟前
浮游应助科研通管家采纳,获得10
4分钟前
浮游应助科研通管家采纳,获得10
4分钟前
4分钟前
自觉的雨南完成签到,获得积分20
5分钟前
浮游应助科研通管家采纳,获得10
6分钟前
浮游应助科研通管家采纳,获得10
6分钟前
浮游应助科研通管家采纳,获得40
6分钟前
七小七完成签到 ,获得积分10
6分钟前
6分钟前
科研通AI6应助易槐采纳,获得10
6分钟前
fantasy发布了新的文献求助10
7分钟前
7分钟前
freyaaaaa应助122319采纳,获得50
7分钟前
浮游应助olekravchenko采纳,获得10
8分钟前
8分钟前
脑洞疼应助科研通管家采纳,获得10
8分钟前
8分钟前
浮游应助科研通管家采纳,获得10
8分钟前
桐桐应助科研通管家采纳,获得10
8分钟前
Able完成签到,获得积分10
8分钟前
高分求助中
Learning and Memory: A Comprehensive Reference 2000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Binary Alloy Phase Diagrams, 2nd Edition 600
Expectations: Teaching Writing from the Reader's Perspective 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5502936
求助须知:如何正确求助?哪些是违规求助? 4598615
关于积分的说明 14464678
捐赠科研通 4532229
什么是DOI,文献DOI怎么找? 2483868
邀请新用户注册赠送积分活动 1467072
关于科研通互助平台的介绍 1439766