Comprehensive evaluation of ten docking programs on a diverse set of protein–ligand complexes: the prediction accuracy of sampling power and scoring power

码头 自动停靠 虚拟筛选 蛋白质-配体对接 计算机科学 对接(动物) 计算生物学 药物发现 人工智能 数据挖掘 化学 生物 生物信息学 医学 生物化学 生物信息学 护理部 基因
作者
Zhe Wang,Huiyong Sun,Xiaojun Yao,Dan Li,Lei Xu,Youyong Li,Sheng Tian,Tingjun Hou
出处
期刊:Physical Chemistry Chemical Physics [The Royal Society of Chemistry]
卷期号:18 (18): 12964-12975 被引量:638
标识
DOI:10.1039/c6cp01555g
摘要

As one of the most popular computational approaches in modern structure-based drug design, molecular docking can be used not only to identify the correct conformation of a ligand within the target binding pocket but also to estimate the strength of the interaction between a target and a ligand. Nowadays, as a variety of docking programs are available for the scientific community, a comprehensive understanding of the advantages and limitations of each docking program is fundamentally important to conduct more reasonable docking studies and docking-based virtual screening. In the present study, based on an extensive dataset of 2002 protein-ligand complexes from the PDBbind database (version 2014), the performance of ten docking programs, including five commercial programs (LigandFit, Glide, GOLD, MOE Dock, and Surflex-Dock) and five academic programs (AutoDock, AutoDock Vina, LeDock, rDock, and UCSF DOCK), was systematically evaluated by examining the accuracies of binding pose prediction (sampling power) and binding affinity estimation (scoring power). Our results showed that GOLD and LeDock had the best sampling power (GOLD: 59.8% accuracy for the top scored poses; LeDock: 80.8% accuracy for the best poses) and AutoDock Vina had the best scoring power (rp/rs of 0.564/0.580 and 0.569/0.584 for the top scored poses and best poses), suggesting that the commercial programs did not show the expected better performance than the academic ones. Overall, the ligand binding poses could be identified in most cases by the evaluated docking programs but the ranks of the binding affinities for the entire dataset could not be well predicted by most docking programs. However, for some types of protein families, relatively high linear correlations between docking scores and experimental binding affinities could be achieved. To our knowledge, this study has been the most extensive evaluation of popular molecular docking programs in the last five years. It is expected that our work can offer useful information for the successful application of these docking tools to different requirements and targets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助宁不言采纳,获得10
刚刚
梦醒了完成签到 ,获得积分10
刚刚
wxy发布了新的文献求助10
刚刚
1秒前
4秒前
6秒前
汉堡包应助上官小怡采纳,获得10
7秒前
7秒前
7秒前
刘乐乐发布了新的文献求助10
7秒前
7秒前
量子星尘发布了新的文献求助10
9秒前
10秒前
小豆芽完成签到,获得积分10
10秒前
pp发布了新的文献求助10
10秒前
niNe3YUE应助17采纳,获得10
11秒前
ddd发布了新的文献求助20
11秒前
1223完成签到,获得积分10
12秒前
12秒前
12秒前
15秒前
wxy发布了新的文献求助10
15秒前
外向的空心人完成签到,获得积分10
15秒前
科研小梁发布了新的文献求助10
17秒前
18秒前
18秒前
英姑应助张开心采纳,获得10
19秒前
19秒前
展锋发布了新的文献求助10
19秒前
量子星尘发布了新的文献求助10
21秒前
21秒前
听风轻语发布了新的文献求助10
22秒前
23秒前
小马甲应助柠栀采纳,获得10
23秒前
科研通AI6.1应助郗文佳采纳,获得10
23秒前
上官小怡发布了新的文献求助10
24秒前
yin景景发布了新的文献求助10
25秒前
suai发布了新的文献求助10
26秒前
26秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5793517
求助须知:如何正确求助?哪些是违规求助? 5749977
关于积分的说明 15486006
捐赠科研通 4920400
什么是DOI,文献DOI怎么找? 2648925
邀请新用户注册赠送积分活动 1596303
关于科研通互助平台的介绍 1550831