Comprehensive evaluation of ten docking programs on a diverse set of protein–ligand complexes: the prediction accuracy of sampling power and scoring power

码头 自动停靠 虚拟筛选 蛋白质-配体对接 计算机科学 对接(动物) 计算生物学 药物发现 人工智能 数据挖掘 化学 生物 生物信息学 医学 生物化学 生物信息学 基因 护理部
作者
Zhe Wang,Huiyong Sun,Xiaojun Yao,Dan Li,Lei Xu,Youyong Li,Sheng Tian,Tingjun Hou
出处
期刊:Physical Chemistry Chemical Physics [Royal Society of Chemistry]
卷期号:18 (18): 12964-12975 被引量:638
标识
DOI:10.1039/c6cp01555g
摘要

As one of the most popular computational approaches in modern structure-based drug design, molecular docking can be used not only to identify the correct conformation of a ligand within the target binding pocket but also to estimate the strength of the interaction between a target and a ligand. Nowadays, as a variety of docking programs are available for the scientific community, a comprehensive understanding of the advantages and limitations of each docking program is fundamentally important to conduct more reasonable docking studies and docking-based virtual screening. In the present study, based on an extensive dataset of 2002 protein-ligand complexes from the PDBbind database (version 2014), the performance of ten docking programs, including five commercial programs (LigandFit, Glide, GOLD, MOE Dock, and Surflex-Dock) and five academic programs (AutoDock, AutoDock Vina, LeDock, rDock, and UCSF DOCK), was systematically evaluated by examining the accuracies of binding pose prediction (sampling power) and binding affinity estimation (scoring power). Our results showed that GOLD and LeDock had the best sampling power (GOLD: 59.8% accuracy for the top scored poses; LeDock: 80.8% accuracy for the best poses) and AutoDock Vina had the best scoring power (rp/rs of 0.564/0.580 and 0.569/0.584 for the top scored poses and best poses), suggesting that the commercial programs did not show the expected better performance than the academic ones. Overall, the ligand binding poses could be identified in most cases by the evaluated docking programs but the ranks of the binding affinities for the entire dataset could not be well predicted by most docking programs. However, for some types of protein families, relatively high linear correlations between docking scores and experimental binding affinities could be achieved. To our knowledge, this study has been the most extensive evaluation of popular molecular docking programs in the last five years. It is expected that our work can offer useful information for the successful application of these docking tools to different requirements and targets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
谢魏楠发布了新的文献求助10
1秒前
zhaoyuwei完成签到,获得积分20
1秒前
2秒前
科研混子完成签到,获得积分10
3秒前
3秒前
Saw完成签到,获得积分10
4秒前
4秒前
jenningseastera应助wenxingsheng采纳,获得10
5秒前
5秒前
5秒前
lilyliu发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
鳄鱼队长完成签到,获得积分10
7秒前
RUIT完成签到,获得积分10
8秒前
8秒前
小鹿斑比完成签到,获得积分10
9秒前
爆米花应助可靠盼旋采纳,获得10
9秒前
科研通AI5应助耶?采纳,获得10
9秒前
村村发布了新的文献求助10
10秒前
10秒前
10秒前
iota完成签到,获得积分10
11秒前
11秒前
Waddles发布了新的文献求助10
11秒前
melody发布了新的文献求助10
12秒前
啾栖完成签到,获得积分10
12秒前
洪山老狗发布了新的文献求助60
13秒前
13秒前
12发布了新的文献求助10
14秒前
14秒前
科研通AI5应助RUIT采纳,获得10
14秒前
11111完成签到 ,获得积分10
14秒前
希望天下0贩的0应助Asou采纳,获得10
15秒前
Oracle应助lxlcx采纳,获得50
15秒前
15秒前
橡皮鱼完成签到,获得积分10
15秒前
宁过儿发布了新的文献求助10
16秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801964
求助须知:如何正确求助?哪些是违规求助? 3347733
关于积分的说明 10334812
捐赠科研通 3063834
什么是DOI,文献DOI怎么找? 1682143
邀请新用户注册赠送积分活动 807936
科研通“疑难数据库(出版商)”最低求助积分说明 763969