Blurring Human–Machine Distinctions: Anthropomorphic Appearance in Social Robots as a Threat to Human Distinctiveness

最佳显著性理论 机器人 机器人学 感知 归属 心理学 恐怖谷理论 身份(音乐) 社会心理学 认知心理学 相似性(几何) 社交机器人 人工智能 人机交互 计算机科学 移动机器人 机器人控制 声学 图像(数学) 物理 神经科学
作者
Francesco Ferrari,Maria Paola Paladino,Jolanda Jetten
出处
期刊:International Journal of Social Robotics [Springer Science+Business Media]
卷期号:8 (2): 287-302 被引量:257
标识
DOI:10.1007/s12369-016-0338-y
摘要

The present research aims at gaining a better insight on the psychological barriers to the introduction of social robots in society at large. Based on social psychological research on intergroup distinctiveness, we suggested that concerns toward this technology are related to how we define and defend our human identity. A threat to distinctiveness hypothesis was advanced. We predicted that too much perceived similarity between social robots and humans triggers concerns about the negative impact of this technology on humans, as a group, and their identity more generally because similarity blurs category boundaries, undermining human uniqueness. Focusing on the appearance of robots, in two studies we tested the validity of this hypothesis. In both studies, participants were presented with pictures of three types of robots that differed in their anthropomorphic appearance varying from no resemblance to humans (mechanical robots), to some body shape resemblance (biped humanoids) to a perfect copy of human body (androids). Androids raised the highest concerns for the potential damage to humans, followed by humanoids and then mechanical robots. In Study 1, we further demonstrated that robot anthropomorphic appearance (and not the attribution of mind and human nature) was responsible for the perceived damage that the robot could cause. In Study 2, we gained a clearer insight in the processes underlying this effect by showing that androids were also judged as most threatening to the human–robot distinction and that this perception was responsible for the higher perceived damage to humans. Implications of these findings for social robotics are discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HHEHK完成签到 ,获得积分10
2秒前
2秒前
tzy6665完成签到,获得积分10
3秒前
清爽妙竹应助查理fofo采纳,获得10
3秒前
迷路采珊完成签到,获得积分10
4秒前
able完成签到 ,获得积分10
5秒前
lixiang完成签到 ,获得积分10
7秒前
晓晓发布了新的文献求助200
7秒前
菠萝吹雪完成签到,获得积分10
8秒前
ll完成签到 ,获得积分10
8秒前
藜藜藜在乎你完成签到 ,获得积分10
9秒前
JiangHb完成签到,获得积分10
10秒前
忽忽完成签到,获得积分10
10秒前
王十二完成签到 ,获得积分10
12秒前
胡萝卜完成签到 ,获得积分10
14秒前
鱼生完成签到 ,获得积分10
14秒前
Pauline完成签到 ,获得积分10
15秒前
tongkaibing完成签到,获得积分10
17秒前
应俊完成签到 ,获得积分10
18秒前
qishi完成签到,获得积分10
23秒前
宝贝完成签到 ,获得积分10
23秒前
lqy1214完成签到,获得积分10
24秒前
Dream完成签到,获得积分0
27秒前
一氧化二氢完成签到,获得积分10
28秒前
文献求助完成签到,获得积分10
28秒前
9970完成签到,获得积分10
28秒前
LingYun完成签到,获得积分10
29秒前
欧阳完成签到,获得积分10
30秒前
shyxia完成签到 ,获得积分10
35秒前
搬砖的化学男完成签到 ,获得积分0
36秒前
xdc完成签到,获得积分10
36秒前
冰阔落完成签到 ,获得积分10
38秒前
CDI和LIB完成签到,获得积分10
38秒前
Hello应助鱼生采纳,获得10
40秒前
xhd183完成签到 ,获得积分10
41秒前
蝈蝈完成签到,获得积分10
43秒前
Jieh完成签到,获得积分10
46秒前
我独舞完成签到 ,获得积分10
46秒前
css完成签到,获得积分10
47秒前
DRYAN完成签到,获得积分10
48秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
[Relativity of the 5-year follow-up period as a criterion for cured cancer] 500
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
Huang‘s catheter ablation of cardiac arrthymias 5th edtion 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3946218
求助须知:如何正确求助?哪些是违规求助? 3491137
关于积分的说明 11059098
捐赠科研通 3222085
什么是DOI,文献DOI怎么找? 1780839
邀请新用户注册赠送积分活动 865866
科研通“疑难数据库(出版商)”最低求助积分说明 800083