Distinguishing cause from effect using observational data: methods and benchmarks

因果推理 观察研究 水准点(测量) 二元分析 计算机科学 推论 因果结构 数据挖掘 机器学习 因果模型 混淆 人工智能 计量经济学 数学 统计 地理 物理 大地测量学 量子力学
作者
Joris M. Mooij,Jonas Peters,Dominik Janzing,Jakob Zscheischler,Bernhard Schölkopf
摘要

The discovery of causal relationships from purely observational data is a fundamental problem in science. The most elementary form of such a causal discovery problem is to decide whether X causes Y or, alternatively, Y causes X, given joint observations of two variables X,Y. An example is to decide whether altitude causes temperature, or vice versa, given only joint measurements of both variables. Even under the simplifying assumptions of no confounding, no feedback loops, and no selection bias, such bivariate causal discovery problems are challenging. Nevertheless, several approaches for addressing those problems have been proposed in recent years. We review two families of such methods: methods based on Additive Noise Models (ANMs) and Information Geometric Causal Inference (IGCI). We present the benchmark CAUSEEFFECTPAIRS that consists of data for 100 different causee ffect pairs selected from 37 data sets from various domains (e.g., meteorology, biology, medicine, engineering, economy, etc.) and motivate our decisions regarding the ground truth causal directions of all pairs. We evaluate the performance of several bivariate causal discovery methods on these real-world benchmark data and in addition on artificially simulated data. Our empirical results on real-world data indicate that certain methods are indeed able to distinguish cause from effect using only purely observational data, although more benchmark data would be needed to obtain statistically significant conclusions. One of the best performing methods overall is the method based on Additive Noise Models that has originally been proposed by Hoyer et al. (2009), which obtains an accuracy of 63 ± 10 % and an AUC of 0.74 ± 0.05 on the real-world benchmark. As the main theoretical contribution of this work we prove the consistency of that method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蓝鲸发布了新的文献求助10
刚刚
1秒前
唐泽雪穗应助vi6bjf采纳,获得10
2秒前
微笑驳完成签到 ,获得积分10
3秒前
3秒前
ppp完成签到,获得积分10
4秒前
5秒前
zhixin发布了新的文献求助10
6秒前
科研通AI6应助救我采纳,获得10
6秒前
Perrylin718发布了新的文献求助10
7秒前
JamesPei应助li采纳,获得10
7秒前
铁观音发布了新的文献求助10
7秒前
linxi完成签到,获得积分10
7秒前
Akim应助Kyle采纳,获得10
8秒前
科研通AI6应助田又又采纳,获得10
8秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
赘婿应助Eileen采纳,获得10
9秒前
隐形的冰海完成签到,获得积分20
9秒前
所所应助木子采纳,获得10
9秒前
丁松冉发布了新的文献求助10
10秒前
ch完成签到,获得积分10
10秒前
诗诗好饿完成签到,获得积分10
10秒前
无花果应助逍遥子采纳,获得10
11秒前
安渝完成签到 ,获得积分10
11秒前
12秒前
wanci应助细胞不凋王女士采纳,获得30
12秒前
13秒前
Carlito发布了新的文献求助10
13秒前
zhy发布了新的文献求助10
13秒前
13秒前
木头算盘发布了新的文献求助10
14秒前
大气凝云发布了新的文献求助10
15秒前
阳春发布了新的文献求助10
16秒前
16秒前
16秒前
Akim应助碧蓝碧凡采纳,获得10
17秒前
17秒前
采桑子完成签到,获得积分20
17秒前
pct完成签到,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 1500
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
Introducing Sociology Using the Stuff of Everyday Life 400
Conjugated Polymers: Synthesis & Design 400
Picture Books with Same-sex Parented Families: Unintentional Censorship 380
一國兩制與國家安全 : 香港國安法透視 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4274530
求助须知:如何正确求助?哪些是违规求助? 3803673
关于积分的说明 11919142
捐赠科研通 3450531
什么是DOI,文献DOI怎么找? 1892135
邀请新用户注册赠送积分活动 942974
科研通“疑难数据库(出版商)”最低求助积分说明 846708