Distinguishing cause from effect using observational data: methods and benchmarks

因果推理 观察研究 水准点(测量) 二元分析 计算机科学 推论 因果结构 数据挖掘 机器学习 因果模型 混淆 人工智能 计量经济学 数学 统计 地理 物理 量子力学 大地测量学
作者
Joris M. Mooij,Jonas Peters,Dominik Janzing,Jakob Zscheischler,Bernhard Schölkopf
摘要

The discovery of causal relationships from purely observational data is a fundamental problem in science. The most elementary form of such a causal discovery problem is to decide whether X causes Y or, alternatively, Y causes X, given joint observations of two variables X,Y. An example is to decide whether altitude causes temperature, or vice versa, given only joint measurements of both variables. Even under the simplifying assumptions of no confounding, no feedback loops, and no selection bias, such bivariate causal discovery problems are challenging. Nevertheless, several approaches for addressing those problems have been proposed in recent years. We review two families of such methods: methods based on Additive Noise Models (ANMs) and Information Geometric Causal Inference (IGCI). We present the benchmark CAUSEEFFECTPAIRS that consists of data for 100 different causee ffect pairs selected from 37 data sets from various domains (e.g., meteorology, biology, medicine, engineering, economy, etc.) and motivate our decisions regarding the ground truth causal directions of all pairs. We evaluate the performance of several bivariate causal discovery methods on these real-world benchmark data and in addition on artificially simulated data. Our empirical results on real-world data indicate that certain methods are indeed able to distinguish cause from effect using only purely observational data, although more benchmark data would be needed to obtain statistically significant conclusions. One of the best performing methods overall is the method based on Additive Noise Models that has originally been proposed by Hoyer et al. (2009), which obtains an accuracy of 63 ± 10 % and an AUC of 0.74 ± 0.05 on the real-world benchmark. As the main theoretical contribution of this work we prove the consistency of that method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
xiaoputaor完成签到 ,获得积分10
5秒前
L1完成签到 ,获得积分10
7秒前
zjq完成签到 ,获得积分10
20秒前
Ava应助NXK采纳,获得10
24秒前
科研通AI2S应助Dr大壮采纳,获得30
25秒前
mark33442完成签到,获得积分10
27秒前
Ray完成签到,获得积分10
28秒前
忆茶戏完成签到 ,获得积分10
30秒前
31秒前
35秒前
36秒前
stiger完成签到,获得积分10
37秒前
NXK发布了新的文献求助10
38秒前
铜豌豆完成签到 ,获得积分10
39秒前
Dr大壮完成签到,获得积分10
39秒前
zhaoyaoshi完成签到 ,获得积分10
39秒前
方方完成签到 ,获得积分10
40秒前
zyy完成签到,获得积分10
44秒前
小芳芳完成签到 ,获得积分10
47秒前
领导范儿应助zyy采纳,获得10
49秒前
DreamMaker完成签到,获得积分10
51秒前
科研通AI5应助罗鸯鸯采纳,获得10
52秒前
手帕很忙完成签到,获得积分10
53秒前
cdercder应助科研通管家采纳,获得10
56秒前
56秒前
cdercder应助科研通管家采纳,获得10
56秒前
蔡从安完成签到,获得积分20
58秒前
夜话风陵杜完成签到 ,获得积分0
59秒前
呆萌滑板完成签到 ,获得积分10
1分钟前
1分钟前
黙宇循光完成签到 ,获得积分10
1分钟前
naiyouqiu1989完成签到,获得积分10
1分钟前
魔幻安南完成签到 ,获得积分10
1分钟前
cristole完成签到 ,获得积分10
1分钟前
CNYDNZB完成签到 ,获得积分20
1分钟前
雪飞杨完成签到 ,获得积分10
1分钟前
zzzllove完成签到 ,获得积分10
1分钟前
baoxiaozhai完成签到 ,获得积分10
1分钟前
Zheng完成签到 ,获得积分10
1分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795624
求助须知:如何正确求助?哪些是违规求助? 3340681
关于积分的说明 10300968
捐赠科研通 3057194
什么是DOI,文献DOI怎么找? 1677539
邀请新用户注册赠送积分活动 805449
科研通“疑难数据库(出版商)”最低求助积分说明 762626