已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Hardware IP Trust Validation: Learn (the Untrustworthy), and Verify

特洛伊木马 硬件特洛伊木马 计算机科学 分类器(UML) 实施 机器学习 对手 对抗制 人工智能 嵌入式系统 计算机工程 计算机安全 软件工程
作者
Tamzidul Hoque,Jonathan Cruz,Prabuddha Chakraborty,Swarup Bhunia
标识
DOI:10.1109/test.2018.8624727
摘要

Increasing reliance on hardware Intellectual Property (IP) cores in modern system-on-chip (SoC) design flow, often obtained from untrusted vendors distributed across the globe, can significantly compromise the security of SoCs. While the design could be verified for a specified functionality using existing tools, it is extremely hard to verify its trustworthiness to guarantee that no hidden, and possibly malicious function exists in the form of a hardware Trojan. Conventional verification process and tools fail to verify the trust of a third-party IP, primarily due to the lack of trusted reference design or golden models. In this paper, for the first time to our knowledge, we introduce a systematic framework to apply machine learning based classification for hardware IP trust verification. A supervised classifier could be trained for identifying Trojan nets within a suspect IP, but the detection coverage and accuracy are extremely sensitive to the quality of training set available. Furthermore, reliance on a static training database limits the classifier's ability in detecting new Trojans and facilitates adversarial learning. The proposed framework includes a Trojan insertion tool that dynamically generates a large number of diverse implementations of Trojan classes for creating a robust training set. It is significantly more difficult for an adversary to evade our classifier using known Trojan classes since the tool dynamically samples the entire Trojan population. To further improve the efficiency of the system, we combined three machine learning models into an average probability Voting Ensemble. Our results for two broad classes of Trojan show excellent classification accuracy of 99.69% and 99.88% with F-score of 86.69% and 88.37% for sequential and combinational Trojans, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiaozhang完成签到 ,获得积分10
2秒前
xcl关注了科研通微信公众号
7秒前
12秒前
shjyang完成签到,获得积分10
12秒前
Morale发布了新的文献求助10
17秒前
18秒前
Rjy完成签到 ,获得积分10
20秒前
科研通AI5应助Ning00000采纳,获得10
21秒前
wanci应助pp0118采纳,获得150
22秒前
22秒前
xcl发布了新的文献求助100
22秒前
无事小神仙给无事小神仙的求助进行了留言
23秒前
够了发布了新的文献求助10
26秒前
打打应助可乐加冰采纳,获得10
33秒前
Morale完成签到,获得积分20
33秒前
科研通AI5应助sherrt采纳,获得10
34秒前
够了完成签到,获得积分10
35秒前
云母完成签到 ,获得积分10
35秒前
子阅完成签到 ,获得积分10
35秒前
37秒前
刘阿婷啾啾完成签到,获得积分10
39秒前
王大壮完成签到,获得积分10
40秒前
40秒前
啊建发布了新的文献求助10
40秒前
Jasper应助科研通管家采纳,获得10
40秒前
NexusExplorer应助科研通管家采纳,获得10
41秒前
搜集达人应助科研通管家采纳,获得10
41秒前
科目三应助科研通管家采纳,获得10
41秒前
FashionBoy应助科研通管家采纳,获得10
41秒前
科研通AI5应助科研通管家采纳,获得30
41秒前
今后应助科研通管家采纳,获得10
41秒前
orixero应助科研通管家采纳,获得10
41秒前
科研通AI5应助科研通管家采纳,获得10
41秒前
科研通AI5应助科研通管家采纳,获得30
42秒前
JamesPei应助科研通管家采纳,获得10
42秒前
orixero应助科研通管家采纳,获得30
42秒前
42秒前
orixero应助科研通管家采纳,获得10
42秒前
隐形曼青应助孟繁荣采纳,获得10
43秒前
44秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843103
求助须知:如何正确求助?哪些是违规求助? 3385301
关于积分的说明 10540121
捐赠科研通 3105937
什么是DOI,文献DOI怎么找? 1710771
邀请新用户注册赠送积分活动 823737
科研通“疑难数据库(出版商)”最低求助积分说明 774264