清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

MRI‐only based synthetic CT generation using dense cycle consistent generative adversarial networks

霍恩斯菲尔德秤 公制(单位) 计算机科学 磁共振成像 核医学 人工智能 算法 计算机断层摄影术 数学 模式识别(心理学) 医学 放射科 运营管理 经济
作者
Yang Lei,Joseph Harms,Tonghe Wang,Yingzi Liu,Hui‐Kuo G. Shu,Ashesh B. Jani,Walter J. Curran,Hui Mao,Tian Liu,Xiaofeng Yang
出处
期刊:Medical Physics [Wiley]
卷期号:46 (8): 3565-3581 被引量:247
标识
DOI:10.1002/mp.13617
摘要

Automated synthetic computed tomography (sCT) generation based on magnetic resonance imaging (MRI) images would allow for MRI-only based treatment planning in radiation therapy, eliminating the need for CT simulation and simplifying the patient treatment workflow. In this work, the authors propose a novel method for generation of sCT based on dense cycle-consistent generative adversarial networks (cycle GAN), a deep-learning based model that trains two transformation mappings (MRI to CT and CT to MRI) simultaneously.The cycle GAN-based model was developed to generate sCT images in a patch-based framework. Cycle GAN was applied to this problem because it includes an inverse transformation from CT to MRI, which helps constrain the model to learn a one-to-one mapping. Dense block-based networks were used to construct generator of cycle GAN. The network weights and variables were optimized via a gradient difference (GD) loss and a novel distance loss metric between sCT and original CT.Leave-one-out cross-validation was performed to validate the proposed model. The mean absolute error (MAE), peak signal-to-noise ratio (PSNR), and normalized cross correlation (NCC) indexes were used to quantify the differences between the sCT and original planning CT images. For the proposed method, the mean MAE between sCT and CT were 55.7 Hounsfield units (HU) for 24 brain cancer patients and 50.8 HU for 20 prostate cancer patients. The mean PSNR and NCC were 26.6 dB and 0.963 in the brain cases, and 24.5 dB and 0.929 in the pelvis.We developed and validated a novel learning-based approach to generate CT images from routine MRIs based on dense cycle GAN model to effectively capture the relationship between the CT and MRIs. The proposed method can generate robust, high-quality sCT in minutes. The proposed method offers strong potential for supporting near real-time MRI-only treatment planning in the brain and pelvis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
哈哈哈发布了新的文献求助10
10秒前
Dong完成签到 ,获得积分10
29秒前
大道要熬完成签到,获得积分10
33秒前
斯文败类应助大道要熬采纳,获得100
38秒前
doreen完成签到 ,获得积分10
40秒前
Gary完成签到 ,获得积分10
1分钟前
CoCo完成签到 ,获得积分10
1分钟前
future完成签到 ,获得积分10
1分钟前
fogsea完成签到,获得积分0
1分钟前
乔杰完成签到 ,获得积分10
2分钟前
颜陌完成签到,获得积分10
2分钟前
激昂的南烟完成签到 ,获得积分10
3分钟前
开放访天完成签到 ,获得积分10
3分钟前
曾经不言完成签到 ,获得积分10
3分钟前
qqaeao完成签到,获得积分10
3分钟前
韩寒完成签到 ,获得积分10
3分钟前
香锅不要辣完成签到 ,获得积分10
4分钟前
南北完成签到,获得积分10
4分钟前
dashi完成签到 ,获得积分10
4分钟前
zz完成签到 ,获得积分10
4分钟前
想吃芝士焗饭完成签到 ,获得积分10
5分钟前
一剑温柔完成签到 ,获得积分10
5分钟前
科研通AI5应助科研通管家采纳,获得10
5分钟前
皮皮完成签到 ,获得积分10
5分钟前
Raki完成签到,获得积分10
5分钟前
学习雷锋好榜样完成签到 ,获得积分10
6分钟前
氢锂钠钾铷铯钫完成签到,获得积分10
6分钟前
Square完成签到,获得积分10
6分钟前
紫陌完成签到,获得积分10
6分钟前
领导范儿应助钱念波采纳,获得10
7分钟前
钱念波发布了新的文献求助10
7分钟前
风秋杨完成签到 ,获得积分10
7分钟前
小布完成签到 ,获得积分0
8分钟前
胡杨树2006完成签到,获得积分10
8分钟前
9分钟前
钱念波发布了新的文献求助10
9分钟前
叶子完成签到,获得积分10
9分钟前
抹茶拿铁加奶砖完成签到 ,获得积分10
9分钟前
白菜完成签到 ,获得积分10
9分钟前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798514
求助须知:如何正确求助?哪些是违规求助? 3344044
关于积分的说明 10318410
捐赠科研通 3060575
什么是DOI,文献DOI怎么找? 1679695
邀请新用户注册赠送积分活动 806746
科研通“疑难数据库(出版商)”最低求助积分说明 763340