Spectral classification of lettuce cadmium stress based on information fusion and VISSA‐GOA‐SVM algorithm

支持向量机 高光谱成像 主成分分析 人工智能 模式识别(心理学) 数学 算法 计算机科学 化学 有机化学
作者
Xin Zhou,Jun Sun,Yan Tian,Xiaohong Wu,Chunxia Dai,Bin Li
出处
期刊:Journal of Food Process Engineering [Wiley]
卷期号:42 (5) 被引量:18
标识
DOI:10.1111/jfpe.13085
摘要

Abstract In order to study the qualitative Vis–NIR spectra detection of cadmium stress in lettuce leaves, this article uses data‐level information fusion method coupled with VISSA‐GOA‐SVM algorithm for research and analysis. There were 140 pieces of lettuce leaves under four gradients of cadmium stress, as well as a total of 560 samples of lettuce were used to collect Vis–NIR spectral information. Wavelet transform (WT), first derivative (1st Der) and second derivative (2nd Der) were used to process original Vis–NIR spectral data, respectively. Besides, the data after different pretreatments will be fused in the data‐decision level and used as a new input layer. Principal component analysis (PCA), iteratively retaining informative variables (IRIV), and variable iterative space shrinkage approach (VISSA) were used to reduce the dimensionality of the data layer, respectively. Besides, support vector machine (SVM) was used to establish a classification model. The results showed that the RTD (initial fusion of three data input layers) combined with VISSA‐GOA‐SVM (VISSA combined with grasshopper optimization support vector machine) classification model was the best, and the accuracy of the calibration and prediction were 100% and 98.57%, respectively. Application of Vis–NIR hyperspectral imaging technique to detect cadmium stress gradient in lettuce leaves provided a new method for identifying different heavy metal residues in lettuce. Practical applications It is of great significance to detect different cadmium stress levels through nondestructive testing. In order to effectively implement the rapid and nondestructive testing of lettuce leaves under different cadmium stress levels, Vis–NIR hyperspectral imaging technology coupled with data‐level fusion method was used in this article. In addition, VISSA‐GOA‐SVM model was established to detect cadmium stress level. It confirms that the Vis–NIR hyperspectral imaging technology is a feasible and effective method for discriminating different cadmium stress levels.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jiaru发布了新的文献求助10
刚刚
1秒前
3秒前
科研通AI5应助阳光路上采纳,获得10
5秒前
钵钵鸡发布了新的文献求助10
7秒前
7秒前
lanadalray发布了新的文献求助10
8秒前
叫滚滚发布了新的文献求助30
8秒前
xx完成签到 ,获得积分10
9秒前
哎呀发布了新的文献求助10
10秒前
sshx完成签到,获得积分10
11秒前
如梦如画发布了新的文献求助10
12秒前
大模型应助将军采纳,获得10
19秒前
20秒前
小白给芬芬的求助进行了留言
23秒前
24秒前
Yy杨优秀发布了新的文献求助10
25秒前
27秒前
28秒前
Moonber完成签到,获得积分10
28秒前
28秒前
李存发布了新的文献求助10
29秒前
kai发布了新的文献求助10
31秒前
查丽完成签到 ,获得积分10
32秒前
英姑应助Mole采纳,获得10
33秒前
33秒前
将军发布了新的文献求助10
34秒前
35秒前
李存完成签到,获得积分10
35秒前
38秒前
钵钵鸡发布了新的文献求助10
39秒前
enttt发布了新的文献求助10
39秒前
科研小崩豆完成签到,获得积分10
40秒前
41秒前
科目三应助Yy杨优秀采纳,获得10
42秒前
Owen应助哎呀采纳,获得10
42秒前
43秒前
LYL完成签到,获得积分10
44秒前
叫滚滚完成签到,获得积分10
47秒前
不安的采白完成签到,获得积分10
48秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Gray Matters: A Biography of Brain Surgery 400
Cybersecurity Blueprint – Transitioning to Tech 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782433
求助须知:如何正确求助?哪些是违规求助? 3327874
关于积分的说明 10233601
捐赠科研通 3042859
什么是DOI,文献DOI怎么找? 1670242
邀请新用户注册赠送积分活动 799658
科研通“疑难数据库(出版商)”最低求助积分说明 758884